The current and expected future proliferation of mobile and embedded technology provides unique opportunities for crowdsourcing platforms to gather more user data for making data-driven decisions at the system level. Intelligent Transportation Systems (ITS) and Vehicular Social Networks (VSN) can be leveraged by mobile, spatial, and passive sensing crowdsourcing techniques due to improved connectivity, higher throughput, smart vehicles containing many embedded systems and sensors, and novel distributed processing techniques. These crowdsourcing systems have the capability of profoundly transforming transportation systems for the better by providing more data regarding (but not limited to) infrastructure health, navigation pathways, and congestion management. In this paper, we review and discuss the architecture and types of ITS crowdsourcing. Then, we delve into the techniques and technologies that serve as the foundation for these systems to function while providing some simulation results to show benefits from the implementation of these techniques and technologies on specific crowdsourcing-based ITS systems. Afterward, we provide an overview of cutting edge work associated with ITS crowdsourcing challenges. Finally, we propose various use-cases and applications for ITS crowdsourcing, and suggest some open research directions.
Current urbanization trends are leading to heightened demand of smarter technologies to facilitate a variety of applications in intelligent transportation systems. Automated crowdsensing constitutes a strong base for ITS applications by providing novel and rich data streams regarding congestion tracking and real-time navigation. Along with these wellleveraged data streams, drivers and passengers tend to report traffic information to social media platforms. Despite their abundance, the use of social media data in ITS has gained more and more attention as of now. In this paper, we develop an automated Natural Language Processing (NLP)-based framework to empower and complement traffic reporting solutions by text mining social media, extracting desired information, and generating alerts and warning for drivers. We employ the finetuned Bidirectional Encoder Representations from Transformers classification model to filer and classify data. Then, we apply the Question-Answering model to extract necessary information characterizing the reported incident such as its location, occurrence time, and nature of the incidents. Afterwards, we convert the collected information into alerts to be integrated into personal navigation assistants. Finally, we compare the recently posted incident reports from both official authorities and social media in order to provide more complete incident pictures and suggest some open research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.