The primary objective of this investigation was to quantitatively identify which training variables result in the greatest strength and hypertrophy outcomes with lower body low intensity training with blood flow restriction (LI-BFR). Searches were performed for published studies with certain criteria. First, the primary focus of the study must have compared the effects of low intensity endurance or resistance training alone to low intensity exercise with some form of blood flow restriction. Second, subject populations had to have similar baseline characteristics so that valid outcome measures could be made. Finally, outcome measures had to include at least one measure of muscle hypertrophy. All studies included in the analysis utilized MRI except for two which reported changes via ultrasound. The mean overall effect size (ES) for muscle strength for LI-BFR was 0.58 [95% CI: 0.40, 0.76], and 0.00 [95% CI: -0.18, 0.17] for low intensity training. The mean overall ES for muscle hypertrophy for LI-BFR training was 0.39 [95% CI: 0.35, 0.43], and -0.01 [95% CI: -0.05, 0.03] for low intensity training. Blood flow restriction resulted in significantly greater gains in strength and hypertrophy when performed with resistance training than with walking. In addition, performing LI-BFR 2-3 days per week resulted in the greatest ES compared to 4-5 days per week. Significant correlations were found between ES for strength development and weeks of duration, but not for muscle hypertrophy. This meta-analysis provides insight into the impact of different variables on muscular strength and hypertrophy to LI-BFR training.
The primary aim of this study was to compare rating of perceived exertion (RPE) values measuring repetitions in reserve (RIR) at particular intensities of 1 repetition maximum (RM) in experienced (ES) and novice squatters (NS). Furthermore, this investigation compared average velocity between ES and NS at the same intensities. Twenty-nine individuals (24.0 ± 3.4 years) performed a 1RM squat followed by a single repetition with loads corresponding to 60, 75, and 90% of 1RM and an 8-repetition set at 70% 1RM. Average velocity was recorded at 60, 75, and 90% 1RM and on the first and last repetitions of the 8-repetition set. Subjects reported an RPE value that corresponded to an RIR value (RPE-10 = 0-RIR, RPE-9 = 1-RIR, and so forth). Subjects were assigned to one of the 2 groups: (a) ES (n = 15, training age: 5.2 ± 3.5 years) and (b) NS (n = 14, training age: 0.4 ± 0.6 years). The mean of the average velocities for ES was slower (p ≤ 0.05) than NS at 100% and 90% 1RM. However, there were no differences (p > 0.05) between groups at 60, 75%, or for the first and eighth repetitions at 70% 1RM. In addition, ES recorded greater RPE at 1RM than NS (p = 0.023). In ES, there was a strong inverse relationship between average velocity and RPE at all percentages (r = -0.88, p < 0.001), and a strong inverse correlation in NS between average velocity and RPE at all intensities (r = -0.77, p = 0.001). Our findings demonstrate an inverse relationship between average velocity and RPE/RIR. Experienced squatter group exhibited slower average velocity and higher RPE at 1RM than NS, signaling greater efficiency at high intensities. The RIR-based RPE scale is a practical method to regulate daily training load and provide feedback during a 1RM test.
Muscle fibers are generally fractionated into type I, IIA, and IIX fibers. Type I fibers specialize in long duration contractile activities and are found in abundance in elite endurance athletes. Conversely type IIA and IIX fibers facilitate short-duration anaerobic activities and are proportionally higher in elite strength and power athletes. A central area of interest concerns the capacity of training to increase or decrease fiber types to enhance high-performance activities. Although interconversions between type IIA and IIX are well recognized in the literature, there are conflicting studies regarding the capacity of type I and II fibers to interconvert. Therefore, the purpose of this article is to analyze the effects of various forms of exercise on type I and type II interconversions. Possible variables that may increase type II fibers and decrease type I fibers are discussed, and these include high velocity isokinetic contractions; ballistic movements such as bench press throws and sprints. Conversely, a shift from type II to type I fibers may occur under longer duration, higher volume endurance type events. Special care is taken to provide practical applications for both the scientist and the athlete.
Psychological stress has been proposed as a major contributor to the progression of cardiovascular disease (CVD). Acute mental stress can activate the sympathetic-adrenal-medullary (SAM) axis, eliciting the release of catecholamines (NE and EPI) resulting in the elevation of heart rate (HR) and blood pressure (BP). Combined stress (psychological and physical) can exacerbate these cardiovascular responses, which may partially contribute to the elevated risk of CVD and increased proportionate mortality risks experienced by some occupations (e.g., firefighting and law enforcement). Studies have supported the benefits of physical activity on physiological and psychological health, including the cardiovascular response to acute stress. Aerobically trained individuals exhibit lower sympathetic nervous system (e.g., HR) reactivity and enhanced cardiovascular efficiency (e.g., lower vascular reactivity and decreased recovery time) in response to physical and/or psychological stress. In addition, resistance training has been demonstrated to attenuate cardiovascular responses and improve mental health. This review will examine stress-induced cardiovascular reactivity and plausible explanations for how exercise training and physical fitness (aerobic and resistance exercise) can attenuate cardiovascular responses to stress. This enhanced functionality may facilitate a reduction in the incidence of stroke and myocardial infarction. Finally, this review will also address the interaction of obesity and physical activity on cardiovascular reactivity and CVD.
Supplemental Digital Content is Available in the Text.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.