BACKGROUND: Improved outcomes with early tranexamic acid (TXA) following trauma hemorrhagic shock (T/HS) may be related to its antifibrinolytic, as well as anti-inflammatory properties. Previous in vitro studies have shown that early TXA administration protects against T/HS endothelial barrier dysfunction and associated glycocalyx degradation. An intact endothelial glycocalyx may protect against subsequent neutrophil mediated tissue injury. We postulated that early TXA administration would mitigate against glycocalyx damage and resultant neutrophil adherence and transmigration through the endothelial barrier. This was studied in vitro using a microfluidic flow platform. METHODS:Human umbilical vein endothelial cell monolayers were subjected to control or shock conditions (hypoxia + epinephrine) followed by administration of TXA 90 minutes or 180 minutes later. RESULTS:"Early" TXA administration protected against glycocalyx degradation, biomarkers of increased permeability and the development of a fibrinolytic phenotype. This was associated with decreased neutrophil endothelial adherence and transmigration. There were no differences in low versus high TXA concentrations. The protective effects were only significant with "early" TXA administration. CONCLUSION: There was a concentration and temporal effect of TXA administration on endothelial glycocalyx degradation. This was associated with "vascular leakiness" as indexed by the relative ratio of Ang-2/1 and polymorphonuclear neutrophil transmigration. Tranexamic acid if administered in patients with T/HS should be administered "early"; this includes in the prehospital setting.
BACKGROUND:Aging is characterized by a decline in cellular function, which has an adverse effect on the biologic response to injury. Both aging and trauma/ hemorrhagic shock (T/HS) increase oxidative stress which impairs the vascular endothelium (EC) and glycocalyx (EG). The additive effect of aging on EC and EG damage following T/HS are unknown. This was studied in an in vitro model. METHODS:Confluent endothelial cell monolayers from primary aortic endothelial cells from 10-week-old mice ("young" cells) or primary aortic cells from 65-week-old mice ("aged" cells) were established in microfluidic devices (MFDs) and perfused at constant shear conditions overnight.Mouse endothelial cell monolayers were then exposed to hypoxia/reoxygenation alone and/or epinephrine or norepinephrine. Endothelial glycocalyx degradation was indexed as well as subsequent endothelial injury/activation. RESULTS:Aged endothelial cells showed increase glycocalyx shedding and subsequent loss of glycocalyx thickness. This lead to a more pronounced level of EC injury/activation compared with young endothelial cells. Although exposure to biomimetic shock conditions exacerbated both endothelial glycocalyx shedding and endothelial injury in both aged and young endothelial cells, the effect was significantly more pronounced in aged cells. CONCLUSION: Advanced age is associated with worse outcomes in severely injured trauma patients. Our study demonstrates that there is increased EG shedding and a diminished EG layer in aged compared to "young" endothelial cell layers. Biomimetic shock conditions lead to an even greater impairment of the endothelial glycocalyx in aged versus young endothelial cell monolayers. It appears that these effects are a consequence of aging related oxidative stress at both baseline and shock conditions. This exacerbates shock-induced endotheliopathy and may contribute to untoward effects on patient outcomes in this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.