Microwave exposure from the use of cellular telephones has been discussed in recent years as a potential risk factor for brain tumours. We included in a case-control study 1617 patients aged 20-80 years of both sexes with brain tumour diagnosed between 1 January 1997 and 30 June 2000. They were alive at the study time and had histopathologically verified brain tumour. One matched control to each case was selected from the Swedish Population Register. The study area was the Uppsala-Orebro, Stockholm, Linköping and Göteborg medical regions of Sweden. Exposure was assessed by a questionnaire that was answered by 1429 (88%) cases and 1470 (91%) controls. In total, use of analogue cellular telephones gave an increased risk with an odds ratio (OR) of 1.3 (95% confidence interval (CI) 1.02-1.6). With a tumour induction period of >10 years the risk increased further: OR 1.8 (95% CI 1.1-2.9). No clear association was found for digital or cordless telephones. With regard to the anatomical area of the tumour and exposure to microwaves, the risk was increased for tumours located in the temporal area on the same side of the brain that was used during phone calls; for analogue cellular telephones the OR was 2.5 (95% CI 1.3-4.9). Use of a telephone on the opposite side of the brain was not associated with an increased risk for brain tumours. With regard to different tumour types, the highest risk was for acoustic neurinoma (OR 3.5, 95% CI 1.8-6.8) among analogue cellular telephone users.
An increasing incidence of testicular cancer has been reported from several countries in the Western world during the last decades. According to current hypothesis, testicular cancer is initiated during the fetal period, and exposure to endocrine disruptors, i.e., xenoestrogens, has been of concern. In this investigation we studied the concentrations of the sum of 38 polychlorinated biphenyls (PCBs), p,p´-dichlorodiphenyl-dichloroethylene, hexachlorobenzene (HCB), and chlordanes, in 61 cases with testicular cancer and 58 age-matched controls. Furthermore, case and control mothers were also asked to participate, and 44 case mothers and 45 control mothers agreed. They were of similar age. In cases only the concentration on lipid basis of cis-nonachlordane was significantly increased, whereas case mothers showed significantly increased concentrations of the sum of PCBs, HCB, trans-and cis-nonachlordane, and the sum of chlordanes. Among case mothers the sum of PCBs yielded an odds ratio (OR) of 3.8; 95% confidence interval (CI), 1.4-10 was calculated using the median concentration for the control mothers as cutoff value. For HCB, OR = 4.4 (95% CI, 1.7-12); for trans-nonachlordane, OR = 4.1 (95% CI, 1.5-11); for cis-nonachlordane, OR = 3.1 (95% CI, 1.2-7.8); and for sum of chlordanes, OR = 1.9 (95% CI, 0.7-5.0). No consistent different risk pattern was found for seminoma or nonseminoma testicular cancer.
Increased risk was obtained for both cellular and cordless phones, highest in the group with >10 years latency period.
We report a population based case-control study of exposure to pesticides as risk factor for non-Hodgkin lymphoma (NHL). Male and female subjects aged 18-74 years living in Sweden were included during December 1, 1999, to April 30, 2002. Controls were selected from the national population registry. Exposure to different agents was assessed by questionnaire. In total 910 (91%) cases and 1016 (92%) controls participated. Exposure to herbicides gave odds ratio (OR) 1.72, 95% confidence interval (CI) 1.18-2.51. Regarding phenoxyacetic acids highest risk was calculated for MCPA; OR 2.81, 95% CI 1.27-6.22, all these cases had a latency period >10 years. Exposure to glyphosate gave OR 2.02, 95% CI 1.10-3.71 and with >10 years latency period OR 2.26, 95% CI 1.16-4.40. Insecticides overall gave OR 1.28, 95% CI 0.96-1.72 and impregnating agents OR 1.57, 95% CI 1.07-2.30. Results are also presented for different entities of NHL. In conclusion our study confirmed an association between exposure to phenoxyacetic acids and NHL and the association with glyphosate was considerably strengthened.
We included in a case-control study on brain tumours and mobile and cordless telephones 1,617 patients aged 20-80 years of both sexes diagnosed during January 1, 1997 to June 30, 2000. They were alive at the study time and had histopathology verified brain tumour. One matched control to each case was selected from the Swedish Population Register. The study area was the Uppsala-Örebro, Stockholm, Linköping and Göteborg medical regions of Sweden. Exposure was assessed by a questionnaire that was answered by 1,429 (88%) cases and 1,470 (91%) controls. In total use of analogue cellular telephones gave an increased risk with odds ratio (OR)=1.3, 95% confidence interval (CI)=1.04-1.6, whereas digital and cordless phones did not overall increase the risk significantly. Ipsilateral use of analogue phones gave OR=1.7, 95% CI=1.2-2.3, digital phones OR=1.3, 95% CI=1.02-1.8 and cordless phones OR=1.2, 95% CI=0.9-1.6. The risk for ipsilateral use was significantly increased for astrocytoma for all studied phone types, analogue phones OR=1.8,95% CI=1.1-3.2, digital phones OR=1.8, 95% CI=1.1-2.8, cordless phones OR=1.8, 95% CI=1.1-2.9. Use of a telephone on the opposite side of the brain was not associated with a significantly increased risk for brain tumours. Regarding anatomical area of the tumour and exposure to microwaves, the risk was increased for tumours located in the temporal area on the same side of the brain that was used during phone calls, significantly so for analogue cellular telephones OR=2.3, 95% CI=1.2-4.1. For acoustic neurinoma OR=4.4, 95% CI=2.1-9.2 was calculated among analogue cellular telephone users. When duration of use was analysed as a continuous variable in the total material, the risk increased per year for analogue phones with OR=1.04, 95% CI=1.01-1.08. For astrocytoma and ipsilateral use the trend was for analogue phones OR=1.10, 95% CI=1.02-1.19, digital phones OR=1.11, 95% CI=1.01-1.22, and cordless phones OR=1.09, 95% CI=1.01-1.19. There was a tendency of a shorter tumour induction period for ipsilateral exposure to microwaves than for contralateral, which may indicate a tumour promotor effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.