This paper is the second in a two-part series describing research sponsored by the Federal Railroad Administration (FRA) to study the structural integrity of joint bars. In Part I, observations from field surveys of joint bar inspections conducted on revenue service track were presented [1]. In this paper, finite element analyses are described to examine the structural performance of rail joints under various loading and tie-ballast support conditions. The primary purpose of these analyses is to help interpret and understand the observations from the field surveys. Moreover, the finite element analyses described in this paper are applied to conduct comparative studies and to assess the relative effect of various factors on the structural response of jointed rail to applied loads. Such factors include: discrete tie support (i.e. supported joint versus suspended joint with varying spans between effective ties), bolt pattern (four versus six bolts), initial bolt tension, and easement. In addition, results are shown for 90 lb rail joined with long-toe angle bars compared to 136 lb rail joined with standard short-toe joint bars.
Accidents that lead to rupture of tank cars carrying hazardous materials can cause serious public safety hazards and substantial economic losses. The desirability of improved tank car designs that are better equipped to keep the commodity contained during impacts is clear. This paper describes a framework for developing strategies to maintain the structural integrity of tank cars during accidents.
Research is currently underway to develop strategies for maintaining the structural integrity of railroad tank cars carrying hazardous materials during collisions. This research, sponsored by the Federal Railroad Administration (FRA), has focused on four design functions to accomplish this goal: blunting the impact load, absorbing the collision energy, strengthening the commodity tank, and controlling the load path into the tank. Previous papers have been presented outlining the weight and space restrictions for this new design, as well as the approach being taken in developing the design. The performance goals for the new car have also been outlined. A key goal for the new design is the ability to contain its lading at four times the impact energy of the baseline equipment.Presently, a preliminary design has been developed that will incorporate these four functions together. This new design features a conventional commodity tank with external reinforcements to strengthen the tank. The reinforced tank is situated on a structural foam cradle, within an external carbody. This carbody has been designed utilizing welded steel sandwich panels. The body is designed to take all of the inservice loads, removing the commodity tank from the load path during normal operations. Additionally, the carbody panels will serve as an energy-absorbing mechanism in the event of a collision.Preliminary steps for fabricating and assembling the new tank car design have been outlined. These steps were developed with the intention of paralleling existing tank car fabrication process as much as is practical.Using the commercial finite element analysis (FEA) software ABAQUS/Explicit, the improved design has been analyzed for its response to an impact by a rigid punch. Simulations of two generalized impact scenarios have been made for this rigid punch impacting the improved tank car head as well as the improved tank car shell. Results of these analyses, including the force-displacement curves for both impacts, are presented within this paper. These results show that an improved-design tank car can contain the commodity for a head impact with eight times the energy of the baseline car, and four times the energy for a shell impact.
The Office of Research and Development of the Federal Railroad Administration (FRA) and the Volpe Center have been conducting research into developing an alternative method of demonstrating the occupied volume integrity (OVI) of passenger rail equipment through a combination of testing and analysis. This research has been performed as a part of FRA Office of Research and Development's Railroad Safety Research and Development program, which provides technical data to support safety rulemaking and enforcement programs of the FRA Office of Railroad Safety. Previous works have been published on a series of full-scale, quasi-static tests intended to examine the load path through the occupant volume of conventional passenger cars retrofitted with crash energy management (CEM) systems. This paper reports on the most recent testing and analysis results.Before performing any tests of proposed alternative loading techniques, an elastic test of the passenger car under study was conducted. The elastic test served both to aid in validating the finite element (FE) model and to verify the suitability of the test car to further loading. In January, 2011, an 800,000 pound conventional buff strength test was performed on Budd Pioneer 244. This test featured arrays of vertical, lateral, and longitudinal displacement transducers to better distinguish between the deformation modes and rigid body motions of the passenger car. Pre-test car repairs included straightening a dent in one side sill and installing patches over cracks found in the side sills. Additionally, lateral restraints were added to the test frame due to concerns in previous tests associated with lateral shift in the frame. As a part of this testing program, a future test of a passenger car is planned to examine an alternative load path through the occupied volume. In the case of Pioneer 244, this load path places load on the floor and roof energy absorber support structures. Loading the occupant volume in this manner more closely simulates the loading the car would experience during a collision.FE analysis was used in conjunction with full-scale testing in this research effort. An FE model of the Pioneer car was constructed and the 800-kip test was analyzed. The 800-kip test results were then compared to the analysis results and the model was adjusted post-test so that satisfactory agreement was reached between the test and the model. In particular, the boundary conditions at the loading and reaction locations required careful attention to appropriately simulate the support conditions in the test. Because the 800-kip load was applied at the line of draft, this test results in significant bending as well as axial load on the car. To ensure that both the axial and bending behaviors are captured in the model, the key results that were compared between test and model are the longitudinal force-displacement behavior and the vertical deflections at various points along the car. The post-test model exhibited good agreement with the compared test results. The validate...
To ensure a level of occupant volume protection, passenger railway equipment operating on mainline railroads in the United States must be designed to resist an 800,000-lb compressive load applied statically along the line of draft. An alternative manner of evaluating the strength of the occupied volume is sought, which will ensure the same level of protection for occupants of the equipment as the current test, but will allow for a greater variety of equipment to be evaluated. A finite element (FE) model of the structural components of a railcar has been applied to examine the existing compressive strength test and evaluate selected alternate testing scenarios. Using simplified geometric and material properties, a generic single-level railcar model was constructed that captured the gross behaviors of the railcar without excessive processing time. When loaded, the carbody structure exhibits some single beam-like behaviors. Application of the existing 800 kip compressive load results in a significant bending moment as well as significant compressive forces. The alternative load cases examined show that a larger total compressive force may be distributed across the end structure of the railcar and result in similar stress levels throughout the structural frame as observed from application of the conventional proof load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.