Comparison of human immunodeficiency virus lentiviral lytic peptide 1 with other host-derived peptides indicates that antimicrobial properties of membrane-active peptides are markedly influenced by their cationic, hydrophobic, and amphipathic properties. Many common themes, such as Arg composition of the cationic face of an amphipathic helix and the importance of maintaining the hydrophobic face, have been deduced from these observations. These studies suggest that a peptide with these structural properties can be derived de novo by using only a few strategically positioned amino acids. However, the effects of length and helicity on antimicrobial activity and selectivity have not been objectively evaluated in the context of this motif. To address these structure-function issues, multimers of a 12-residue lytic base unit (LBU) peptide composed only of Arg and Val residues aligned to form idealized amphipathic helices were designed. Bacterial killing assays and circular dichroism analyses reveal a strong correlation between antibacterial activity, peptide length, and propensity to form a helix in solvent mimicking the environment of a membrane. Increasing peptide length beyond two LBUs (24-residue peptides) resulted in no appreciable increase in antimicrobial activity. Derivatives (WLBU) of the LBU series were further engineered by substituting Trp residues in the hydrophobic domains. The 24-residue WLBU2 peptide was active at physiologic NaCl concentrations against Staphylococcus aureus and mucoid and nonmucoid strains of Pseudomonas aeruginosa. Further, WLBU2 displayed the highest antibacterial selectivity of all peptides evaluated in the present study by using a coculture model of P. aeruginosa and primary human skin fibroblasts. These findings provide fundamental information toward the de novo design of an antimicrobial peptide useful for the management of infectious diseases.
Biologic membranes are not simply inert physical barriers, but complex and dynamic environments that affect membrane protein structure and function. Residing within these environments, ion channels control the flux of ions across the membrane through conformational changes that allow transient ion flux through a central pore. These conformational changes may be modulated by changes in transmembrane electrochemical potential, the binding of small ligands or other proteins, or changes in the local lipid environment. Ion channels play fundamental roles in cellular function and, in higher eukaryotes, are the primary means of intercellular signaling, especially between excitable cells such as neurons. The focus of this review is to examine how the composition of the bilayer affects ion channel structure and function. This is an important consideration because the bilayer composition varies greatly in different cell types and in different organellar membranes. Even within a membrane, the lipid composition differs between the inner and outer leaflets, and the composition within a given leaflet is both heterogeneous and highly dynamic. Differential packing of lipids (and proteins) leads to the formation of microdomains, and lateral diffusion of these microdomains or "lipid rafts" serve as mobile platforms for the clustering and organization of bilayer constituents including ion channels. The structure and function of these channels are sensitive to specific chemical interactions with neighboring components of the membrane and also to the biophysical properties of their membrane microenvironment (e.g., fluidity, lateral pressure profile, and bilayer thickness). As specific examples, we have focused on the K+ ion channels and the ligand-gated nicotinicoid receptors, two classes of ion channels that have been well-characterized structurally and functionally. The responsiveness of these ion channels to changes in the lipid environment illustrate how ion channels, and more generally, any membrane protein, may be regulated via cellular control of membrane composition.
Dopamine oxidation has been previously demonstrated to cause dysfunction in mitochondrial respiration and membrane permeability, possibly related to covalent modification of critical proteins by the reactive dopamine quinone. However, specific mitochondrial protein targets have not been identified. In this study, we utilized proteomic techniques to identify proteins directly conjugated with 14 C-dopamine from isolated rat brain mitochondria exposed to radiolabeled dopamine quinone (150 μM) and differentiated SH-SY5Y cells treated with 14 C-dopamine (150 μM). We observed a subset of rat brain mitochondrial proteins that were covalently modified by 14 C-dopamine, including chaperonin, ubiquinol-cytochrome c reductase core protein 1, glucose regulated protein 75/ mitochondrial HSP70/mortalin, mitofilin, and mitochondrial creatine kinase. We also found the Parkinson's disease associated proteins ubiquitin carboxy-terminal hydrolase L1 and DJ-1 to be covalently modified by dopamine in both brain mitochondrial preparations and SH-SY5Y cells. The susceptibility of the identified proteins to covalent modification by dopamine may carry implications for their role in the vulnerability of dopaminergic neurons in Parkinson's disease pathogenesis.
Oxidative stress and mitochondrial dysfunction have been linked to dopaminergic neuron degeneration in Parkinson disease. We have previously shown that dopamine oxidation leads to selective dopaminergic terminal degeneration in vivo and alters mitochondrial function in vitro. In this study, we utilized 2-D difference in-gel electrophoresis to assess changes in the mitochondrial proteome following in vitro exposure to reactive dopamine quinone. A subset of proteins exhibit decreased fluorescence labeling following dopamine oxidation, suggesting a rapid loss of specific proteins. Amongst these proteins are mitochondrial creatine kinase, mitofilin, mortalin, the 75 kDa subunit of NADH dehydrogenase, and superoxide dismutase 2. Western blot analyses for mitochondrial creatine kinase and mitofilin confirmed significant losses in isolated brain mitochondria exposed to dopamine quinone and PC12 cells exposed to dopamine. These results suggest that specific mitochondrial proteins are uniquely susceptible to changes in abundance following dopamine oxidation, and carry implications for mitochondrial stability in Parkinson disease neurodegeneration.
The secondary structure of alamethicin, a membrane channel-forming polypeptide, has been examined by circular dichroism spectroscopy to determine the relationship of its conformation in organic solution to its conformation in a membrane-bound state. The spectrum of alamethicin in small unilamellar dimyristoyl phosphatidylcholine vesicles is significantly different from its spectrum in 10% methanol/acetonitrile, the solvent from which it was crystallized (Fox and Richards: Nature 300:325-330, 1982), as well as its spectrum in methanol, the solvent in which NMR studies have been done (Banerjee and Chan: Biochemistry 22:3709-3713, 1983). This suggests that structural models based on studies of the molecule in organic solvents may not be entirely appropriate for the membrane-bound state. To distinguish between different models for channel formation and insertion, two different methods were used to associate the alamethicin with vesicles; in addition, the effect of oligomerization on the conformation of the membrane-bound state was investigated. These studies are consistent with a modified insertion model in which alamethicin monomers, dimers, or trimers associate with the bilayer and then spontaneously oligomerize to form a prechannel with a higher helix content. This aggregate could then "open" upon application of an appropriate gating transmembrane potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.