This study demonstrates the myocardial protective effects of RIPC using a simple noninvasive technique of four 5-min cycles of lower limb ischemia and reperfusion. These novel data support the need for a larger study of RIPC in patients undergoing cardiac surgery.
Background-We have demonstrated that myocardial acceleration during isovolumic contraction (IVA) is a sensitive index of left ventricular contractile function. In this study, we assessed the utility of IVA to measure right ventricular (RV) contractile function. Methods and Results-We examined 8 pigs by using tissue Doppler imaging of the RV free wall and simultaneous measurements of intraventricular pressure, volume, maximal elastance (e max ), preload recruitable stroke work, and dP/dt max by conductance catheterization. Animals were paced in the right atrium at a rate of 130 beats per minute (bpm).IVA was compared with elastance during contractility modulation by esmolol and dobutamine and during preload reduction and afterload increase by transient balloon occlusion of the inferior vena cava and pulmonary artery, respectively. Data were also obtained during incremental atrial pacing from 110 to 210 bpm. Esmolol led to a decrease in IVA and dP/dt max . During dobutamine infusion, IVA, dP/dt max , preload recruitable stroke work, and e max all increased significantly. During preload reduction and afterload increase, IVA remained constant up to a reduction of RV volume by 54% and an RV systolic pressure increase of 58%. Pacing up to a rate of 190 bpm led to a stepwise increase in IVA and dP/dt max , with a subsequent fall at a pacing rate of 210 bpm. Conclusions-IVA is a measurement of RV contractile function that is unaffected by preload and afterload changes in a physiological range and is able to measure the force-frequency relation. This novel index may be ideally suited to the assessment of acute changes of RV function in clinical studies.
Lymphocytic myocarditis and left ventricular noncompaction are important causes of childhood cardiomyopathy in Australia. The timing and severity of presentation in children with cardiomyopathy are related to the type of cardiomyopathy, as well as to genetic and ethnic factors.
Remote ischemic preconditioning (IPC) reduces tissue injury caused by ischemia-reperfusion (IR) in distant organs. We tested the hypothesis that remote IPC (rIPC) modifies inflammatory gene transcription in humans. Using a microarray method, we demonstrated that a simple model of brief forearm ischemia suppresses proinflammatory gene expression in circulating leukocytes. Genes encoding key proteins involved in cytokine synthesis, leukocyte chemotaxis, adhesion and migration, exocytosis, innate immunity signaling pathways, and apoptosis were all suppressed within 15 min (early phase IPC) and more so after 24 h (second window IPC). Changes in leukocyte CD11b expression measured by flow cytometry mirrored this pattern, with there being a significant (P = 0.01) reduction at 24 h. The results of this study show that the rIPC stimulus modifies leukocyte inflammatory gene expression. This effect may contribute to the protective effect of IPC against IR injury and may have broader implications in other inflammatory processes. This is the first study of human gene expression following rIPC stimulus. rIPC stimulus suppressed proinflammatory gene transcription in human leukocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.