Romosozumab, a humanized monoclonal antibody specific for sclerostin (SOST), has been approved for treatment of postmenopausal women with osteoporosis at a high risk for fracture. Previous work in sclerostin global knockout (Sost−/−) mice indicated alterations in immune cell development in the bone marrow (BM), which could be a possible side effect in romosozumab-treated patients. Here, we examined the effects of short-term sclerostin depletion in the BM on hematopoiesis in young mice receiving sclerostin antibody (Scl-Ab) treatment for 6 weeks, and the effects of long-term Sost deficiency on wild-type (WT) long-term hematopoietic stem cells transplanted into older cohorts of Sost−/− mice. Our analyses revealed an increased frequency of granulocytes in the BM of Scl-Ab-treated mice and WT®Sost−/− chimeras, indicating myeloid-biased differentiation in Sost-deficient BM microenvironments. This myeloid bias extended to extramedullary hematopoiesis in the spleen and was correlated with an increase in inflammatory cytokines TNFα, IL-1α, and MCP-1 in Sost−/− BM serum. Additionally, we observed alterations in erythrocyte differentiation in the BM and spleen of Sost−/− mice. Taken together, our current study indicates novel roles for Sost in the regulation of myelopoiesis and control of inflammation in the BM.
Romosozumab, a humanized monoclonal antibody specific for sclerostin, has been approved for treatment of post-menopausal women with osteoporosis at high risk for fracture. In several Phase III clinical trials, romosozumab decreased the risk of vertebral fractures up to 73% and increased total hip area bone mineral density by 3.2%. Previous work in 12 to 15-week-old sclerostin-knockout (Sost-/-) mice indicated that changes in immune cell development occur in the bone marrow (BM), which could be a possible side effect to follow in human patients. Our overall goal was to define the mechanisms that guide behavior of long-term hematopoietic stem cells (LT-HSCs) after exposure to an irregular BM microenvironment. SOST plays an important role in maintaining bone homeostasis, as demonstrated by the increased ratio of bone volume to total volume observed in Sost-/- mice. Here, we examined the effects of short-term sclerostin depletion in the BM on hematopoiesis in young (8 week-old) mice receiving sclerostin-antibody (Scl-Ab) treatment for 6 weeks, and the effects of long-term Sost-deficiency on wild-type (WT) LT-HSCs transplanted into older (16-22 week-old) cohorts of Sost-/- mice. Our analyses revealed an increased frequency of granulocytes and decreased frequency of lymphocytes in the BM of Scl-Ab treated mice and WT→Sost-/- hematopoietic chimeras, indicating myeloid-biased differentiation in Sost-deficient BM microenvironments. This myeloid bias extended to extramedullary hematopoiesis in the spleen and was correlated with an increase in inflammatory cytokines TNF-alpha, IL-1-alpha and MCP-1 in the serum of the Sost-/- BM. Additionally, we observed alterations in erythrocyte differentiation in the BM and spleen of Sost-/- mice. Taken together, our current study indicates novel roles for Sost in the regulation of myelopoiesis and control of inflammation in the BM. Our animal studies strongly recommend tracking of hematopoietic function in patients treated with romosozumab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.