The major Food and Drug Association-approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL.
Adipose tissue is an ideal source of mesenchymal stem cells for bone tissue engineering: it is largely dispensable and readily accessible with minimal morbidity. However, the stromal vascular fraction (SVF) of adipose tissue is a heterogeneous cell population, which leads to unreliable bone formation. In the present study, we prospectively purified human perivascular stem cells (PSCs) from adipose tissue and compared their bone-forming capacity with that of traditionally derived SVF. PSCs are a population (sorted by fluorescence-activated cell sorting) of pericytes (CD146؉CD34−CD45−) and adventitial cells (CD146−CD34؉CD45−), each of which we have previously reported to have properties of mesenchymal stem cells. Here, we found that PSCs underwent osteogenic differentiation in vitro and formed bone after intramuscular implantation without the need for predifferentiation. We next sought to optimize PSCs for in vivo bone formation, adopting a demineralized bone matrix for osteoinduction and tricalcium phosphate particle formulation for protein release. Patient-matched, purified PSCs formed significantly more bone in comparison with traditionally derived SVF by all parameters. Recombinant bone morphogenetic protein 2 increased in vivo bone formation but with a massive adipogenic response. In contrast, recombinant Nel-like molecule 1 (NELL-1; a novel osteoinductive growth factor) selectively enhanced bone formation. These studies suggest that adipose-derived human PSCs are a new cell source for future efforts in skeletal regenerative medicine. Moreover, PSCs are a stem cell-based therapeutic that is readily approvable by the U.S. Food and Drug Administration, with potentially increased safety, purity, identity, potency, and efficacy. Finally, NELL-1 is a candidate growth factor able to induce human PSC osteogenesis. STEM CELLS TRANSLATIONAL MEDICINE 2012;1:510 -519
In various practical applications, nanomaterials typically have functionalized surfaces. Yet, the studies of toxicity and antibacterial activity of functionalized nanoparticles are scarce. We investigated the effect of surface modifications on antibacterial activity of ZnO under ambient illumination, and we found that nanoparticles coated with different surface modifying reagents could exhibit higher or lower toxicity compared to bare ZnO, depending on the surface modifying reagent used. Different surface modifying reagent molecules resulted in differences in the release of Zn(2+) ions and the production of reactive oxygen species (ROS). However, the antibacterial activity did not correlate with the ROS levels or the Zn(2+) ion release. One of the surface-modified ZnO samples exhibited significantly lower Zn(2+) ion release while at the same time exhibiting improved antibacterial activity. In all cases, damage of the cell wall membranes and/or changes in the membrane permeability have been observed, together with the changes in ATR-FTIR spectra indicating differences in protein conformation. Mechanisms of antibacterial activity are discussed.
A theoretical inverse relationship has long been postulated for osteogenic and adipogenic differentiation (bone versus adipose tissue differentiation). This inverse relationship in theory at least partially underlies the clinical entity of osteoporosis, in which marrow mesenchymal stem cells (MSCs) have a predilection for adipose differentiation that increases with age. In the present study, we assayed the potential anti-adipogenic effects of Nell-1 protein (an osteoinductive molecule). Using 3T3-L1 (a human preadipocyte cell line) cells and human adipose-derived stromal cells (ASCs), we observed that adenoviral delivered (Ad)-Nell-1 or recombinant NELL-1 protein significantly reduced adipose differentiation across all markers examined (Oil red O staining, adipogenic gene expression [Pparg, Lpl, Ap2]). In a prospective fashion, Hedgehog signaling was assayed as potentially downstream of Nell-1 signaling in regulating osteogenic over adipogenic differentiation. In comparison to Ad-LacZ control, Ad-Nell-1 increased expression of hedgehog signaling markers (Ihh, Gli1, Ptc1). These studies suggest that Nell-1 is a potent anti-adipogenic agent. Moreover, Nell-1 signaling may inhibit adipogenic differentiation via a Hedgehog dependent mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.