In recent years, deep networks have led to dramatic improvements in speech enhancement by framing it as a data-driven pattern recognition problem. In many modern enhancement systems, large amounts of data are used to train a deep network to estimate masks for complex-valued short-time Fourier transforms (STFTs) to suppress noise and preserve speech. However, current masking approaches often neglect two important constraints: STFT consistency and mixture consistency. Without STFT consistency, the system's output is not necessarily the STFT of a time-domain signal, and without mixture consistency, the sum of the estimated sources does not necessarily equal the input mixture. Furthermore, the only previous approaches that apply mixture consistency use real-valued masks; mixture consistency has been ignored for complex-valued masks.In this paper, we show that STFT consistency and mixture consistency can be jointly imposed by adding simple differentiable projection layers to the enhancement network. These layers are compatible with real or complex-valued masks. Using both of these constraints with complex-valued masks provides a 0.7 dB increase in scale-invariant signal-to-distortion ratio (SI-SDR) on a large dataset of speech corrupted by a wide variety of nonstationary noise across a range of input SNRs.
We explore a variety of neural networks configurations for one-and two-channel spectrogram-mask-based speech enhancement. Our best model improves on previous state-ofthe-art performance on the CHiME2 speech enhancement task by 0.4 decibels in signal-to-distortion ratio (SDR). We examine trade-offs such as non-causal look-ahead, computation, and parameter count versus enhancement performance and find that zero-look-ahead models can achieve, on average, within 0.03 dB SDR of our best bidirectional model. Further, we find that 200 milliseconds of look-ahead is sufficient to achieve equivalent performance to our best bidirectional model.Index Terms-speech enhancement, low-latency inference
Estimation of perceptual quality in audio and speech is possible using a variety of methods. The combined v3 release of ViSQOL and ViSQOLAudio (for speech and audio, respectively,) provides improvements upon previous versions, in terms of both design and usage. As an open source C++ library or binary with permissive licensing, ViSQOL can now be deployed beyond the research context into production usage. The feedback from internal production teams at Google has helped to improve this new release, and serves to show cases where it is most applicable, as well as to highlight limitations. The new model is benchmarked against real-world data for evaluation purposes. The trends and direction of future work is discussed.
Streaming spatial audio over networks requires efficient encoding techniques that compress the raw audio content without compromising quality of experience. Streaming service providers such as YouTube need a perceptually relevant objective audio quality metric to monitor users' perceived quality and spatial localization accuracy. In this paper we introduce a full reference objective spatial audio quality metric, AMBIQUAL, which assesses both Listening Quality and Localization Accuracy. In our solution both metrics are derived directly from the B-format Ambisonic audio. The metric extends and adapts the algorithm used in ViSQOLAudio, a full reference objective metric designed for assessing speech and audio quality. In particular, Listening Quality is derived from the omnidirectional channel and Localization Accuracy is derived from a weighted sum of similarity from B-format directional channels. This paper evaluates whether the proposed AMBIQUAL objective spatial audio quality metric can predict two factors: Listening Quality and Localization Accuracy by comparing its predictions with results from MUSHRA subjective listening tests. In particular, we evaluated the Listening Quality and Localization Accuracy of First and Third-Order Ambisonic audio compressed with the OPUS 1.2 codec at various bitrates (i.e. 32, 128 and 256, 512kbps respectively). The sample set for the tests comprised both recorded and synthetic audio clips with a wide range of time-frequency characteristics. To evaluate Localization Accuracy of compressed audio a number of fixed and dynamic (moving vertically and horizontally) source positions were selected for the test samples. Results showed a strong correlation (PCC=0.919; Spearman=0.882 regarding Listening Quality and PCC=0.854; Spearman=0.842 regarding Localization Accuracy) between objective quality scores derived from the B-format Ambisonic audio using AMBIQUAL and subjective scores obtained during listening MUSHRA tests. AMBIQUAL displays very promising quality assessment predictions for spatial audio. Future work will optimise the algorithm to generalise and validate it for any Higher Order Ambisonic formats.
The recent emergence of machine-learning based generative models for speech suggests a significant reduction in bit rate for speech codecs is possible. However, the performance of generative models deteriorates significantly with the distortions present in real-world input signals. We argue that this deterioration is due to the sensitivity of the maximum likelihood criterion to outliers and the ineffectiveness of modeling a sum of independent signals with a single autoregressive model. We introduce predictive-variance regularization to reduce the sensitivity to outliers, resulting in a significant increase in performance. We show that noise reduction to remove unwanted signals can significantly increase performance. We provide extensive subjective performance evaluations that show that our system based on generative modeling provides state-of-the-art coding performance at 3 kb/s for real-world speech signals at reasonable computational complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.