The heterogeneous disease course of COVID-19 is unpredictable, ranging from mild self-limiting symptoms to cytokine storms, acute respiratory distress syndrome (ARDS), multi-organ failure and death. Identification of high-risk cases will enable appropriate intervention and escalation. This study investigates the routine laboratory tests and cytokines implicated in COVID-19 for their potential application as biomarkers of disease severity, respiratory failure and need of higher-level care. From analysis of 203 samples, CRP, IL-6, IL-10 and LDH were most strongly correlated with the WHO ordinal scale of illness severity, the fraction of inspired oxygen delivery, radiological evidence of ARDS and level of respiratory support ( p ≤ 0.001). IL-6 levels of ≥3.27 pg/ml provide a sensitivity of 0.87 and specificity of 0.64 for a requirement of ventilation, and a CRP of ≥37 mg/L of 0.91 and 0.66. Reliable stratification of high-risk cases has significant implications on patient triage, resource management and potentially the initiation of novel therapies in severe patients.
Preliminary pathological and biomarker data suggest that SARS-CoV-2 infection can damage the nervous system. To understand what, where and how damage occurs, we collected serum and CSF from patients with COVID-19 and characterised neurological syndromes involving the peripheral and central nervous system (n = 34). We measured biomarkers of neuronal damage and neuroinflammation, and compared these with non-neurological control groups, which included patients with (n = 94) and without (n = 24) COVID-19. We detected increased concentrations of neurofilament light, a dynamic biomarker of neuronal damage, in the CSF of those with central nervous system inflammation (encephalitis and acute disseminated encephalomyelitis) (14800pg/mL [400, 32400]), compared to those with encephalopathy (1410pg/mL [756, 1446], peripheral syndromes (GBS) (740pg/mL [507, 881]) and controls (872pg/mL [654,1200]). Serum neurofilament light levels were elevated across patients hospitalised with COVID-19, irrespective of neurological manifestations. There was not the usual close correlation between CSF and serum neurofilament light, suggesting serum neurofilament light elevation in the non-neurological patients may reflect peripheral nerve damage in response to severe illness. We did not find significantly elevated levels of serum neurofilament light in community cases of COVID-19 arguing against significant neurological damage. Glial fibrillary acidic protein, a marker of astrocytic activation, was not elevated in the CSF or serum of any group, suggesting astrocytic activation is not a major mediator of neuronal damage in COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.