We have developed glucose-responsive implantable microdevices for closed-loop delivery of insulin and conducted in vivo testing of these devices in diabetic rats. The microdevices consist of an albumin-based bioinorganic membrane that utilizes glucose oxidase (GOx), catalase (CAT) and manganese dioxide (MnO(2)) nanoparticles to convert a change in the environmental glucose level to a pH stimulus, which regulates the volume of pH-sensitive hydrogel nanoparticles and thereby the permeability of the membrane. The membrane is integrated with microfabricated PDMS (polydimethylsiloxane) structures to form compact, stand-alone microdevices, which do not require tethering wires or tubes. During in vitro testing, the microdevices showed glucose-responsive insulin release over multiple cycles at clinically relevant glucose concentrations. In vivo, the microdevices were able to counter hyperglycemia in diabetic rats over a one-week period. The in vitro and in vivo testing results demonstrated the efficacy of closed-loop biosensing and rapid response of the 'smart' insulin delivery devices.
A drug-delivery microdevice integrating pH-responsive nano-hydrogel particles functioning as intelligent nano valves is described. The polymeric microdevices are monolithic without requiring peripheral control hardware or additional components for controlling drug-release rates. pH-responsive nanoparticles were synthesized and embedded into a composite membrane. The resulting pH-responsive composite membranes were integrated with PDMS micro reservoirs via a room-temperature transfer bonding technique to form the proof-of-concept microdevices. In vitro release characterization of the microdevices was conducted in which the release rate of Vitamin B(12) (VB(12)) as a model drug increased dramatically when the local pH value was decreased from 7.4 to 4. This device concept can serve as a platform technology for intelligent drug delivery in response to various in vivo environmental signals.
Development of highly concentrated formulations of protein and peptide drugs is a major challenge due to increased susceptibility to aggregation and precipitation. Numerous drug delivery systems including implantable and wearable controlled-release devices require thermally stable formulations with high concentrations due to limited device sizes and long-term use. Herein we report a highly concentrated insulin gel formulation (up to 80 mg/mL, corresponding to 2200 IU/mL), stabilized with a non-ionic amphiphilic triblock copolymer (i.e., Pluronic F-127 (PF-127)). Chemical and physical stability of insulin was found to be improved with increasing polymer concentration, as evidenced by reduced insulin fibrillation, formation of degradation products, and preserved secondary structure as measured by HPLC and circular dichroism spectroscopy, respectively. This formulation exhibits excellent insulin stability for up to 30 days in vitro under conditions of continuous shear at 37 °C, attributable to the amphiphilic properties of the copolymer and increased formulation viscosity. The mechanism of stabilizing insulin structure by PF-127 was investigated by coarse-grained molecular dynamics (CG-MD), all-atom MD, and molecular docking simulations. The computation results revealed that PF-127 could reduce fibrillation of insulin by stabilizing the secondary structure of unfolded insulin and forming hydrophobic interaction with native insulin. The gel formulations contained in microfabricated membrane-reservoir devices released insulin at a constant rate dependent on both membrane porosity and copolymer concentration. Subcutaneous implantation of the gel formulation-containing devices into diabetic rats resulted in normal blood glucose levels for the duration of drug release. These findings suggest that the thermally stable gel formulations are suitable for long-term and implantable drug delivery applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.