Molecular dynamics is a commonly used technique in computational biology. One key issue of each molecular dynamics simulation is: When does this simulation reach equilibrium state? A widely used way to determine this is the visual and intuitive inspection of root mean square deviation (RMSD) plots of the simulation. Although this technique has been criticized several times, it is still often used. Therefore, we present a study proving that this method is not reliable at all. We conducted a survey with participants from the field in which we illustrated different RMSD plots to scientists in the field of molecular dynamics. These plots were randomized and repeated, using a statistical model and different variants of the plots. We show that there is no mutual consent about the point of equilibrium. The decisions are severely biased by different parameters. Therefore, we conclude that scientists should not discuss the equilibration of a molecular dynamics simulation on the basis of a RMSD plot.
PurposeTherapeutic decisions in breast cancer patients crucially depend on the status of estrogen receptor, progesterone receptor and HER2, obtained by immunohistochemistry (IHC). These are known to be inaccurate sometimes, and we demonstrate how to use gene-expression to increase precision of receptor status.MethodsWe downloaded data from 3241 breast cancer patients out of 36 clinical studies. For each receptor, we modelled the mRNA expression of the receptor gene and a co-gene by logistic regression. For each patient, predictions from logistic regression were merged with information from IHC on a probabilistic basis to arrive at a fused prediction result.ResultsWe introduce Sankey diagrams to visualize the step by step increase of precision as information is added from gene expression: IHC-estimates are qualified as ‘confirmed’, ‘rejected’ or ‘corrected’. Additionally, we introduce the category ‘inconclusive’ to spot those patients in need for additional assessments so as to increase diagnostic precision and safety.ConclusionsWe demonstrate a sound mathematical basis for the fusion of information, even if partly contradictive. The concept is extendable to more than three sources of information, as particularly important for OMICS data. The overall number of undecidable cases is reduced as well as those assessed falsely. We outline how decision rules may be extended to also weigh consequences, being different in severity for false-positive and false-negative assessments, respectively. The possible benefit is demonstrated by comparing the disease free survival between patients whose IHC could be confirmed versus those for which it was corrected.Electronic supplementary materialThe online version of this article (10.1007/s10549-018-4920-x) contains supplementary material, which is available to authorized users.
BackgroundCurrent prognostic clinical and morphological parameters are insufficient to accurately predict metastasis in individual melanoma patients. Several studies have described gene expression signatures to predict survival or metastasis of primary melanoma patients, however the reproducibility among these studies is disappointingly low.Methodology/Principal FindingsWe followed extended REMARK/Gould Rothberg criteria to identify gene sets predictive for metastasis in patients with primary cutaneous melanoma. For class comparison, gene expression data from 116 patients with clinical stage I/II (no metastasis) and 72 with III/IV primary melanoma (with metastasis) at time of first diagnosis were used. Significance analysis of microarrays identified the top 50 differentially expressed genes. In an independent data set from a second cohort of 28 primary melanoma patients, these genes were analyzed by multivariate Cox regression analysis and leave-one-out cross validation for association with development of metastatic disease. In a multivariate Cox regression analysis, expression of the genes Ena/vasodilator-stimulated phosphoprotein-like (EVL) and CD24 antigen gave the best predictive value (p = 0.001; p = 0.017, respectively). A multivariate Cox proportional hazards model revealed these genes as a potential independent predictor, which may possibly add (both p = 0.01) to the predictive value of the most important morphological indicator, Breslow depth.Conclusion/SignificanceCombination of molecular with morphological information may potentially enable an improved prediction of metastasis in primary melanoma patients. A strength of the gene expression set is the small number of genes, which should allow easy reevaluation in independent data sets and adequately designed clinical trials.
Immunohistochemical (IHC) determination of receptor status in breast cancer patients is frequently inaccurate. Since it directs the choice of systemic therapy, it is essential to increase its reliability.We increase the validity of IHC receptor expression by additionally considering gene expression (GE) measurements. Crisp therapeutic decisions are based on IHC estimates, even if they are borderline reliable. We further improve decision quality by a responsibility function, defining a critical domain for gene expression. Refined normalization is devised to file any newly diagnosed patient into existing data bases. Our approach renders receptor estimates more reliable by identifying patients with questionable receptor status. The approach is also more efficient since the rate of conclusive samples is increased. We have curated and evaluated gene expression data, together with clinical information, from 2880 breast cancer patients. Combining IHC with gene expression information yields a method more reliable and also more efficient as compared to common practice up to now.Several types of possibly suboptimal treatment allocations, based on IHC receptor status alone, are enumerated. A ‘therapy allocation check’ identifies patients possibly miss-classified. Estrogen: false negative 8%, false positive 6%. Progesterone: false negative 14%, false positive 11%. HER2: false negative 2%, false positive 50%. Possible implications are discussed.We propose an ‘expression look-up-plot’, allowing for a significant potential to improve the quality of precision medicine.Methods are developed and exemplified here for breast cancer patients, but they may readily be transferred to diagnostic data relevant for therapeutic decisions in other fields of oncology.
Correctly estimating the hormone receptor status for estrogen (ER) and progesterone (PGR) is crucial for precision therapy of breast cancer. It is known that conventional diagnostics (immunohistochemistry, IHC) yields a significant rate of wrongly diagnosed receptor status. Here we demonstrate how Dempster Shafer decision Theory (DST) enhances diagnostic precision by adding information from gene expression. We downloaded data of 3753 breast cancer patients from Gene Expression Omnibus. Information from IHC and gene expression was fused according to DST, and the clinical criterion for receptor positivity was re-modelled along DST. Receptor status predicted according to DST was compared with conventional assessment via IHC and gene-expression, and deviations were flagged as questionable. The survival of questionable cases turned out significantly worse (Kaplan Meier p < 1%) than for patients with receptor status confirmed by DST, indicating a substantial enhancement of diagnostic precision via DST. This study is not only relevant for precision medicine but also paves the way for introducing decision theory into OMICS data science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.