Flow cytometry (FCM) offers a multiparametric technology capable of characterizing single extracellular vesicles (EVs). However, most flow cytometers are designed to detect cells, which are larger than EVs. Whereas cells exceed the background noise, signals originating from EVs partly overlap with the background noise, thereby making EVs more difficult to detect than cells. This technical mismatch together with complexity of EV‐containing fluids causes limitations and challenges with conducting, interpreting and reproducing EV FCM experiments. To address and overcome these challenges, researchers from the International Society for Extracellular Vesicles (ISEV), International Society for Advancement of Cytometry (ISAC), and the International Society on Thrombosis and Haemostasis (ISTH) joined forces and initiated the EV FCM working group. To improve the interpretation, reporting, and reproducibility of future EV FCM data, the EV FCM working group published an ISEV position manuscript outlining a framework of minimum information that should be reported about an FCM experiment on single EVs (MIFlowCyt‐EV). However, the framework contains limited background information. Therefore, the goal of this compendium is to provide the background information necessary to design and conduct reproducible EV FCM experiments. This compendium contains background information on EVs, the interaction between light and EVs, FCM hardware, experimental design and preanalytical procedures, sample preparation, assay controls, instrument data acquisition and calibration, EV characterization, and data reporting. Although this compendium focuses on EVs, many concepts and explanations could also be applied to FCM detection of other particles within the EV size range, such as bacteria, lipoprotein particles, milk fat globules, and viruses.
The particle size distribution (PSD) of extracellular vesicles (EVs) and other submicron particles in biofluids is commonly measured by nanoparticle tracking analysis (NTA) and tunable resistive pulse sensing (TRPS). A new technique for measuring the PSD is microfluidic resistive pulse sensing (MRPS). Because specific guidelines for measuring EVs together with other particles in biofluids with MRPS are lacking, we developed an operating procedure to reproducibly measure the PSD. The PSDs of particles in human plasma, conditioned medium of PC3 prostate cancer cell line (PC3 CM), and human urine were measured with MRPS (nCS1, Spectradyne LLC) to investigate: (i) the optimal diluent that reduces the interfacial tension of the sample while keeping EVs intact, (ii) the lower limit of detection (LoD) of particle size, (iii) the reproducibility of the PSD, (iv) the optimal dilution for measuring the PSD, and (v) the agreement in measured concentration between microfluidic cartridges with overlapping detection ranges. We found that the optimal diluent is 0.1% bovine serum albumin (w/v) in Dulbecco’s phosphate-buffered saline. Based on the shape of the PSD, which is expected to follow a power-law function within the full detection range, we obtained a lower LoD of 75 nm for plasma and PC3 CM and 65 nm for urine. Normalized PSDs are reproducible (R2 > 0.950) at dilutions between 10–100x for plasma, 5–20x for PC3 CM, and 2–4x for urine. Furthermore, sample dilution does not impact the dilution-corrected concentration when the microfluidic cartridges are operated within their specified concentration ranges. PSDs from microfluidic cartridges with overlapping detection ranges agreed well (R2 > 0.936) and when combined the overall PSD spanned 5 orders of magnitude of measured concentration. Based on these findings, we have developed operating guidelines to reproducibly measure the PSD of EVs together with other particles in biofluids with MRPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.