ObjectivePatients undergoing immune modulatory therapies for the treatment of autoimmune diseases such as multiple sclerosis, and individuals with an impaired-immune system, most notably AIDS patients, are in the high risk group of developing progressive multifocal leukoencephalopathy (PML), an often lethal disease of the brain characterized by lytic infection of oligodendrocytes in the central nervous system (CNS) with JC virus (JCV). The immune system plays an important regulatory role in controlling JCV reactivation from latent sites by limiting viral gene expression and replication. However, little is known regarding the molecular mechanisms responsible for this regulation.Methods and ResultsHere, we investigated the impact of soluble immune mediators secreted by activated PBMCs on viral replication and gene expression by cell culture models and molecular virology techniques. Our data revealed that viral gene expression and viral replication were suppressed by soluble immune mediators. Further studies demonstrated that soluble immune mediators secreted by activated PBMCs inhibit viral replication induced by T-antigen, the major viral regulatory protein, by suppressing its expression in glial cells. This unexpected suppression of T-antigen was mainly associated with the suppression of translational initiation. Cytokine/chemokine array studies using conditioned media from activated PBMCs revealed several candidate cytokines with possible roles in this regulation. Among them, only IFN-γ showed a robust inhibition of T-antigen expression. While potential roles for IFN-β, and to a lesser extent IFN-α have been described for JCV, IFN-γ has not been previously implicated. Further analysis of IFN-γ signaling pathway revealed a novel role of Jak1 signaling in control of viral T-antigen expression. Furthermore, IFN-γ suppressed JCV replication and viral propagation in primary human fetal glial cells, and showed a strong anti-JCV activity.ConclusionsOur results suggest a novel role for IFN-γ in the regulation of JCV gene expression via downregulation of the major viral regulatory protein, T-antigen, and provide a new avenue of research to understand molecular mechanisms for downregulation of viral reactivation that may lead to development of novel strategies for the treatment of PML.
BackgroundHuman polyomavirus JCV is the etiologic agent of progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease characterized by lytic infection of glial cells in the central nervous system. PML is seen primarily in immunosuppressed patients and is mainly classified as an AIDS-defining disease. In addition to structural capsid proteins, JCV encodes multiple regulatory proteins, including T-antigen and agnoprotein, which are required for functional lytic infection. Previous studies have suggested that molecular interaction between viral proteins and host factors play an important role in reactivation of JCV and progression of the viral life cycle in glial cells. Recently, serine/arginine rich splicing factor 1 (SRSF1), a cellular alternative splicing factor, was identified as a strong negative regulator of JCV in glial cells. SRSF1 inhibits JCV gene expression and viral replication by directly interacting with viral promoter sequences. Here, we have investigated possible impact of JCV regulatory proteins, T-antigen and agnoprotein, on SRSF1-mediated suppression of JCV gene expression in glial cells.ResultsReporter gene analysis has suggested that T-antigen rescues viral transcriptional suppression mediated by SRSF1. Further analyses have revealed that T-antigen promotes viral gene expression by suppressing SRSF1 gene transcription in glial cells. A subsequent ChIP analysis revealed that T-antigen associates with the promoter region of SRSF1 to induce the transcriptional suppression.ConclusionsThese findings have revealed a molecular interplay between cellular SRSF1 and viral T-antigen in controlling JCV gene expression, and may suggest a novel mechanism of JCV reactivation in patients who are at risk of developing PML.
JC virus (JCV) is a human polyomavirus and the etiologic agent of the demyelinating disease progressive multifocal leukoencephalopathy (PML). PML is observed in patients with underlying immunocompromising conditions, suggesting that neuro-immune interactions between peripheral immune cells and neuro-glia play an important role in controlling viral reactivation in the brain. There is little known about the immunobiology of JCV reactivation in glial cells and the role of immune, glial, and viral players in this regulation. We have previously showed that agnoprotein, a small JCV regulatory protein, is released from infected cells and internalized by neighboring bystander cells. Here we have investigated the possible role of extracellular and intracellular agnoprotein in the neuroimmune response to JC virus. Our findings suggest that glial cells exposed to agnoprotein secrete significantly less GM-CSF, which is mediated by agnoprotein induced suppression of GM-CSF transcription. Likewise, monocytes treated with agnoprotein showed altered differentiation and maturation. In addition, monocytes and microglial cells exposed to agnoprotein showed a significant reduction in their phagocytic activities. Moreover, when an in vitro blood-brain barrier model was used, agnoprotein treatment resulted in decreased monocyte migration through the endothelial cell layer in response to activated astrocytes. All together, these results have revealed a novel immunomodulatory function of agnoprotein during JCV infection within theCNS and open a new avenue of research to better understand the mechanisms associated with JCV reactivation in patients who are at risk of developing PML.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.