This study compared the functional efficacy of three commonly prescribed ankle–foot orthosis (AFO) configurations (solid [SAFO], hinged [HAFO], and posterior leaf spring [PLS]). Sixteen independently ambulatory children (10 males, six females; mean age 8 years 4 months, SD 2 years 4 months; range 4 years 4 months to 11 years 6 months) with spastic diplegia participated in this study. Four children were classified at level I of the Gross Motor Function Classification System (GMFCS; Palisano et al. 1997); the remaining 12 were at level II. Children were assessed barefoot (BF) at baseline (baseline assessment of energy consumption was performed with shoes on, no AFO) and in each orthotic configuration after three months of use, using gait analysis, oxygen consumption, and functional outcome measures. AFO use did not markedly alter joint kinematics or kinetics at the pelvis, hip, or knee. All AFO configurations normalized ankle kinematics in stance, increased step/stride length, decreased cadence, and decreased energy cost of walking. Functionally, all AFO configurations improved the execution of walking/running/jumping skills, upper extremity coordination, and fine motor speed/dexterity. However, the quality of gross motor skill performance and independence in mobility were unchanged. These results suggest that most children with spastic diplegia benefit functionally from AFO use. However, some children at GMFCS level II demonstrated a subtle but detrimental effect on function with HAFO use, shown by an increase in peak knee extensor moment in early stance, excessive ankle dorsiflexion, decreased walking velocity, and greater energy cost. Therefore, constraining ankle motion by using a PLS or SAFO should be considered for most, but not all, children with spastic diplegia.
The purpose of this study was to examine the effectiveness of the hinged ankle-foot orthosis (HAFO), posterior leaf spring (PLS), and solid ankle-foot orthosis (SAFO), in preventing contracture, improving efficiency of gait, and enhancing performance of functional motor skills in 30 children (21 male, 9 female; mean age 9 years 4 months; age range 4 to 18 years,) with spastic hemiplegia. Following a 3-month baseline period of no ankle-foot orthosis (AFO) use, each AFO was worn for 3 months after which ankle range of motion, gait analysis, energy consumption, and functional motor skills were assessed. The HAFO and PLS increased passive ankle dorsiflexion and normalization of ankle rocker function during gait. Normalization of knee motion in stance was dependent upon the knee abnormality present and AFO configuration. The HAFO was the most effective in controlling knee hyperextension in stance, while PLS was the most effective in promoting knee extension in children with >10˚ knee flexion in stance. Energy efficiency was improved in 21 of the children, with 13 of these children demonstrating the greatest improvement in HAFO and PLS. Improvements in functional mobility were greatest in the HAFO and PLS.
Fifteen children who were diagnosed with idiopathic toe walking that cannot be corrected by nonoperative treatment were assessed by clinical examination and computer-based gait analysis preoperatively and approximately 1 year after Achilles tendon lengthening. Passive dorsiflexion improved from a mean plantarflexion contracture of 8 degrees to dorsiflexion of 12 degrees after surgery. Ankle kinematics normalized, with mean ankle dorsiflexion in stance improving from -8 to 12 degrees and maximum swing phase dorsiflexion improving from -20 to 2 degrees. Peak ankle power generation increased from 2.05 to 2.37 W/kg but did not reach values of population norms. No patient demonstrated clinically relevant triceps surae weakness or a calcaneal gait pattern. Seven patients had a stance phase knee hyperextension preoperatively, and 6 of these corrected after surgery. Achilles tendon lengthening improves ankle kinematics without compromising triceps surae strength; however, plantarflexion power does not reach normal levels at 1 year after surgery.
This study compared the functional efficacy of three commonly prescribed ankle-foot orthosis (AFO) configurations (solid [SAFO], hinged [HAFO], and posterior leaf spring [PLS]). Sixteen independently ambulatory children (10 males, six females; mean age 8 years 4 months, SD 2 years 4 months; range 4 years 4 months to 11 years 6 months) with spastic diplegia participated in this study. Four children were classified at level I of the Gross Motor Function Classification System (GMFCS; Palisano et al. 1997); the remaining 12 were at level II. Children were assessed barefoot (BF) at baseline (baseline assessment of energy consumption was performed with shoes on, no AFO) and in each orthotic configuration after three months of use, using gait analysis, oxygen consumption, and functional outcome measures. AFO use did not markedly alter joint kinematics or kinetics at the pelvis, hip, or knee. All AFO configurations normalized ankle kinematics in stance, increased step/stride length, decreased cadence, and decreased energy cost of walking. Functionally, all AFO configurations improved the execution of walking/running/jumping skills, upper extremity coordination, and fine motor speed/dexterity. However, the quality of gross motor skill performance and independence in mobility were unchanged. These results suggest that most children with spastic diplegia benefit functionally from AFO use. However, some children at GMFCS level II demonstrated a subtle but detrimental effect on function with HAFO use, shown by an increase in peak knee extensor moment in early stance, excessive ankle dorsiflexion, decreased walking velocity, and greater energy cost. Therefore, constraining ankle motion by using a PLS or SAFO should be considered for most, but not all, children with spastic diplegia.
The purpose of this study was to compare the cumulative efficacy (three treatment sessions) of botulinum toxin A (BTX-A) alone, casting alone, and the combination of BTX-A and casting in the management of dynamic equinus in ambulatory children with spastic cerebral palsy (CP). Thirty-nine children with spastic CP (mean age 5y 10mo, range 3 to 9y) were enrolled in the study. A multicenter, randomized, double blind, placebo-controlled prospective study was used. Children were randomly assigned to one of three treatment groups: BTX-A only (B), placebo injection plus casting (C), or BTX-A plus casting (B+C). The dosage for the BTX-A injections was 4U/kg per extremity. Assessments were performed at baseline, 3, 6, 7.5, and 12 months with a total of three treatments administered after the evaluations at baseline, 3, and 6 months. Primary outcome measures were ankle kinematics, velocity, and stride length. Secondary outcome measures were ankle spasticity, strength, range of motion, and ankle kinetics. Group B made no significant change in any variable at any time. Groups C and B+C demonstrated significant improvements in ankle kinematics, spasticity, passive range of motion, and dorsiflexor strength. Results of this 1-year study indicate that BTX-A alone provided no improvement in the parameters measured in this study, while casting and BTX-A/casting were effective in the short- and long-term management of dynamic equinus in children with spastic CP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.