In normal erythrocytes, small quantities of methaemoglobin are formed constantly and are continuously reduced, almost entirely by the reduced nicotine adenine dinucleotide (NADH) diaphorase system, rather than the reduced nicotine adenine dinucleotide phosphate (NADPH) diaphorase system. Methaemoglobinaemias are usually the result of xenobiotics, either those that may directly oxidise haemoglobin or those that require metabolic activation to an oxidising species. The most clinically relevant direct methaemoglobin formers include local anaesthetics (such as benzocaine and, to a much lesser extent, prilocaine) as well as amyl nitrite and isobutyl nitrite, which have become drugs of abuse. Indirect, or metabolically activated, methaemoglobin formation by dapsone and primaquine may cause adverse reactions. The clinical consequences of methaemoglobinaemia are related to the blood level of methaemoglobin; dyspnoea, nausea and tachycardia occur at methaemoglobin levels of > or = 30%, while lethargy, stupor and deteriorating consciousness occur as methaemoglobin levels approach 55%. Higher levels may cause cardiac arrhythmias, circulatory failure and neurological depression, while levels of 70% are usually fatal. Cyanosis accompanied by a lack of responsiveness to 100% oxygen indicates a diagnosis of methaemoglobinaemia, which should be confirmed using a CO-oximeter. Pulse oximeters do not detect methaemoglobin and may give a misleading impression of patient oxygenation. Methaemoglobinaemia is treated with intravenous methylene blue (methyl-thioninium chloride; ;1 to 2 mg/kg of a 1% solution). If the patient does not respond, perhaps because of glucose-6-phosphate dehydrogenase (G6PD) deficiency or continued presence of toxin, admission to an intensive care unit and exchange transfusion may be required. Dapsone-mediated chronic methaemoglobin formation can be reduced by coadministration of cimetidine to aid patient tolerance. Increasing knowledge and awareness of drug-mediated acute methaemoglobinaemia among physicians should lead to prompt diagnosis and treatment of this potentially life-threatening condition.
Dapsone is useful in the treatment of a number of inflammatory conditions which are characterized by neutrophil infiltration. It is the drug of choice for suppression of the symptoms of dermatitis herpetiformis, as it inhibits the process by which neutrophils leave the circulation and migrate to lesional sites. It also prevents the tissue destruction normally caused by the neutrophils' respiratory burst. Although dapsone can cause a number of serious idiosyncratic reactions, such as agranulocytosis, tolerance of the drug at higher doses is more usually determined by its haematological side-effects of methaemoglobinaemia and haemolysis. These effects are due entirely to the hepatic N-hydroxylation of dapsone to a hydroxylamine metabolite, some of which escapes from the liver and rapidly enters red cells. Attempts have been made to counteract the haemotoxic effects of the metabolite by the use of antioxidants such as vitamins E and C. Recently, the co-administration of a metabolic inhibitor such as cimetidine has been shown to reduce significantly dapsone-dependent methaemoglobinaemia, without any change in drug efficacy. It remains to be seen if this approach will be adopted clinically, to improve patient tolerance of high dapsone dosage.
Multiplexed photoaptamer-based arrays that allow for the simultaneous measurement of multiple proteins of interest in serum samples are described. Since photoaptamers covalently bind to their target analytes before fluorescent signal detection, the arrays can be vigorously washed to remove background proteins, providing the potential for superior signal-to-noise ratios and lower limits of quantification in biological matrices. Data are presented here for a 17-plex photoaptamer array exhibiting limits of detection below 10 fM for several analytes including interleukin-16, vascular endothelial growth factor, and endostatin and able to measure proteins in 10% serum samples. The assays are simple, scalable, and reproducible. Affinity of the capture reagent is shown to be directly correlated to the limit of detection for the analyte on the array.
SUMMARY We compared venous plasma norepinephrine (NE) concentrations in 191 resting, supine patients with essential hypertension and 129 normortensive controls. Among normotensives, plasma NE increased significantly with age, but among hypertensives, no age-related increase occurred, due to relatively high NE values among young hypertensives. When patients and controls less than 40 years old were considered, hypertensives showed significantly higher plasma NE than the controls (317 vs 245 pg/ml, t = 3.15, p < 0.01); but above the age of 40 years, no significant hypertensive-normotensive difference was obtained. These results, predicted by recent literature reviews, help to resolve the persistent controversy about sympathetic neural activity in essential hypertension, since such activity appears to be abnormal mainly in young patients. The data are consistent with increased sympathetic nervous system activity in the early stages of essential hypertension. (Hypertension 5: 100-104, 1983) KEY WORDS • norepinephrine • hypertension • blood pressure • age • catecholamines • epinephrine T HE possible role of increased sympathetic nervous system activity in the etiology of essential hypertension has been a persistently controversial topic in hypertension research. The introduction of adequately sensitive and specific techniques for measuring plasma norepinephrine (NE) 1 and indications that plasma NE provides an index of sympathetic neural activity in humans 2 promised to resolve this issue, but instead led to conflicting results. Recently, literature reviews of the large number of comparative studies of NE in patients with essential hypertension and in normotensive controls used a statistical approach in which each study provided single data points for the hypertensive and normotensive groups, so that factors could be identified that differentiated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.