We use pulses of electrical, mechanical, and thermal energy to determine the ignition thresholds of self-propagating reactions in Al/(Ni-7 V) and Al/Inconel multilayers. The energy density and power density required to initiate reactions in a Al/(Ni-7 V) foil with a 50 nm bilayer is compared for all three techniques to demonstrate the importance of heat loss on ignition thresholds and its dependence on the test volume and the surrounding thermal resistance. In addition, ignition is shown to occur at temperatures as low as 232 °C when heat losses are very small suggesting that ignition can be controlled by atomic mixing in the solid state. The experiments demonstrate that the ignition threshold drops with increasing ignition volume, and it rises with increasing bilayer spacing and with increasing intermixed thickness. These trends are also supported by an analytical model we derive to predict the effects of ignition volume, multilayer microstructure, and physical properties on the ignition threshold. We calculate an activation energy of 77.3 ± 1.3 kJ/mol for solid state mixing based on measured ignition temperatures.
Heats of reaction and heat capacity changes were measured using scanning nanocalorimetry for a nickel and aluminum bilayer where initial heating rates of 104 K/s were achieved. Multiple exotherms were observed on the initial heating, but the number of intermediate exotherms decreased with increasing heating rate. The final phase was the B2 NiAl intermetallic. Results from the nanocalorimeter were compared with a conventional differential scanning calorimeter (operating at 0.7 K/s) to understand the effect of significant (10 000×) increases in heating rate on the phase transformation sequence. The high heating rate in the nanocalorimeter delays reaction initiation, causes the exothermic peaks to shift to higher temperatures, and appears to suppress the formation of intermediate, metastable phases. Potential explanations for this apparent suppression are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.