Summary Cancer immunotherapy restores and/or enhances effector function of CD8+ T cells in the tumor microenvironment1,2. CD8+ T cells activated by cancer immunotherapy execute tumor clearance mainly by inducing cell death through perforin-granzyme- and Fas/Fas ligand-pathways3,4. Ferroptosis is a form of cell death that differs from apoptosis and results from iron-dependent lipid peroxide accumulation5,6. Although it was mechanistically illuminated in vitro7,8, emerging evidence has shown that ferroptosis may be implicated in a variety of pathological scenarios9,10. However, the involvement of ferroptosis in T cell immunity and cancer immunotherapy is unknown. Here, we find that immunotherapy-activated CD8+ T cells enhance ferroptosis-specific lipid peroxidation in tumor cells, and in turn, increased ferroptosis contributes to the anti-tumor efficacy of immunotherapy. Mechanistically, interferon gamma (IFNγ) released from CD8+ T cells downregulates expression of SLC3A2 and SLC7A11, two subunits of glutamate-cystine antiporter system xc-, restrains tumor cell cystine uptake, and as a consequence, promotes tumor cell lipid peroxidation and ferroptosis. In preclinical models, depletion of cyst(e)ine by cyst(e)inase in combination with checkpoint blockade synergistically enhances T cell-mediated anti-tumor immunity and induces tumor cell ferroptosis. Expression of system xc- is negatively associated with CD8+ T cell signature, IFNγ expression, and cancer patient outcome. Transcriptome analyses before and during nivolumab therapy reveal that clinical benefits correlate with reduced expression of SLC3A2 and increased IFNγ and CD8. Thus, T cell-promoted tumor ferroptosis is a novel anti-tumor mechanism. Targeting tumor ferroptosis pathway constitutes a therapeutic approach in combination with checkpoint blockade.
The ability to generate lung and airway epithelial cells from human pluripotent stem cells (hPSCs) would have applications in regenerative medicine, drug screening and modeling of lung disease, and studies of human lung development. We established, based on developmental paradigms, a highly efficient method for directed differentiation of hPSCs into lung and airway epithelial cells. Long-term differentiation in vivo and in vitro yielded basal, goblet, Clara, ciliated, type I and type II alveolar epithelial cells. Type II alveolar epithelial cells generated were capable of surfactant protein-B uptake and stimulated surfactant release, providing evidence of specific function. Inhibiting or removing agonists to signaling pathways critical for early lung development in the mouse—retinoic acid, Wnt and BMP—recapitulated defects in corresponding genetic mouse knockouts. The capability of this protocol to generate most cell types of the respiratory system suggests its utility for deriving patient-specific therapeutic cells.
The 2009 Kidney Disease: Improving Global Outcomes (KDIGO) clinical practice guideline on the monitoring, management, and treatment of kidney transplant recipients is intended to assist the practitioner caring for adults and children after kidney transplantation. The guideline development process followed an evidence-based approach, and management recommendations are based on systematic reviews of relevant treatment trials. Critical appraisal of the quality of the evidence and the strength of recommendations followed the Grades of Recommendation Assessment, Development, and Evaluation (GRADE) approach. The guideline makes recommendations for immunosuppression and graft monitoring, as well as prevention and treatment of infection, cardiovascular disease, malignancy, and other complications that are common in kidney transplant recipients, including hematological and bone disorders. Limitations of the evidence, especially the lack of definitive clinical outcome trials, are discussed and suggestions are provided for future research. This summary includes a brief description of methodology and the complete guideline recommendations but does not include the rationale and references for each recommendation, which are published elsewhere.
A challenge in oncology is to rationally and effectively integrate immunotherapy with traditional modalities including radiotherapy. Here, we demonstrate that radiotherapy induces tumor cell ferroptosis. Ferroptosis agonists augment and ferroptosis antagonists limit radiotherapy efficacy in tumor models. Immunotherapy sensitizes tumors to radiotherapy by promoting tumor cell ferroptosis. Mechanistically, IFNγ derived from immunotherapy-activated CD8+ T cells and radiotherapy-activated ATM independently, yet synergistically repress SLC7A11, a unit of the glutamate-cystine antiporter xc−, resulting in reduced cystine uptake, enhanced tumor lipid oxidation and ferroptosis, and improved tumor control. Thus, ferroptosis is an unappreciated mechanism and focus for the development of effective combinatorial cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.