Dick Menzies and colleagues report findings from a collaborative, individual patient-level meta-analysis of treatment outcomes among patients with multidrug-resistant tuberculosis.
Nanoparticle-based drug delivery systems have considerable potential for treatment of tuberculosis (TB). The important technological advantages of nanoparticles used as drug carriers are high stability, high carrier capacity, feasibility of incorporation of both hydrophilic and hydrophobic substances, and feasibility of variable routes of administration, including oral application and inhalation. Nanoparticles can also be designed to allow controlled (sustained) drug release from the matrix. These properties of nanoparticles enable improvement of drug bioavailability and reduction of the dosing frequency, and may resolve the problem of nonadherence to prescribed therapy, which is one of the major obstacles in the control of TB epidemics. This article highlights some of the issues of nanotechnology relevant to the anti-TB drugs.
For patients with pulmonary tuberculosis that is resistant to rifampin and isoniazid, even the best available treatment is often unsuccessful. Only about half of such patients eventually have negative sputum cultures despite carefully selected regimens administered for extended periods. Failure to control this resistant infection is associated with high mortality and ominous implications for the public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.