We analyzed the user-level file access patterns and caching behavior of the Sprite distributed file system. The first part of our analysis repeated a study done in 1985 of the BSD UNIX file system. We found that file throughput has increased by a factor of 20 to an average of 8 Kbytes per second per active user over 10-minute intervals, and that the use of process migration for load sharing increased burst rates by another factor of six. Also, many more very large (multi-megabyte) files are in use today than in 1985. The second part of our analysis measured the behavior of Sprite's main-memory file caches. Client-level caches average about 7 Mbytes in size (about one-quarter to onethird of main memory) and filter out about 50% of the traffic between clients and servers. 35% of the remaining server traffic is caused by paging, even on workstations with large memories. We found that client cache consistency is needed to prevent stale data errors, but that it is not invoked often enough to degrade overall system performance.
We analyzed the user-level file access patterns and caching behavior of the Sprite distributed file system. The first part of our analysis repeated a study done in 1985 of the BSD UNIX file system. We found that file throughput has increased by a factor of 20 to an average of 8 Kbytes per second per active user over 10-minute intervals, and that the use of process migration for load sharing increased burst rates by another factor of six. Also, many more very large (multi-megabyte) files are in use today than in 1985. The second part of our analysis measured the behavior of Sprite's main-memory file caches. Client-level caches average about 7 Mbytes in size (about one-quarter to onethird of main memory) and filter out about 50% of the traffic between clients and servers. 35% of the remaining server traffic is caused by paging, even on workstations with large memories. We found that client cache consistency is needed to prevent stale data errors, but that it is not invoked often enough to degrade overall system performance.
One application of distributed computing is remote system instrumentation. Such instrumentation programs require good response with low overhead to pr~ vide timely results without disturbing the system being measured. A remote pr~ cedure call system, such as the Circus system developed at Berkeley, allows pr~ grammers to write distributed programs with little more effort than is required to write local programs. This paper compare!! a Circus-based implementation or a Berkeley UNIXt tool (vmstat) with one based on the byte-stream protocol TCP.The Circus version makes for much cleaner code, but it requires more start-up time and higher CPU overhead than the TCP version. We conclude that the present incarnation or Circus is not acceptable for our work, but that future versions of Circus should prove valuable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.