Evidence suggests that the fragility (m) of glass formation both underpins and is sensitive to nanoconfinement effects on the glass transition. Here we present data indicating that nanoconfinement-induced changes in m of freestanding films emerge from a dominance of finite-size-driven fragility suppression over interfacial fragility enhancement.
Despite decades of research on the effects of nanoconfinement on the glass transition temperature T, apparent discrepancies between pseudothermodynamic and dynamic measurements of these effects have raised questions regarding the presence of long-ranged interfacial dynamic gradients in glass-forming liquids. Here we show that these differences can be accounted for based on disparities in these methods' weightings over local T's within an interfacial gradient. This finding suggests that a majority of experimental data are consistent with a broad interfacial dynamic interphase in glass-forming liquids.
Nanoscale confinement has been shown to alter the glass transition and associated mechanical and transport properties of glass-forming materials. Inspired by expected interrelations between nanoconfinement effects, cooperative dynamics in supercooled liquids, and the "fragility" (or temperature-abruptness) of the glass transition, it is commonly expected that nanoconfinement effects on T should be more pronounced for more fragile glass formers. Here we employ molecular dynamics simulations of glass formation in the bulk and under nanoconfinement of model polymers in which we systematically tune fragility by several routes. Results indicate that a correlation between fragility and the strength of nanoconfinement effects is weak to modest at best when considering all systems but can appear to be stronger when considering a subset of systems. This outcome is consistent with a reanalysis of the Adam-Gibbs theory of glass formation indicating that fragility does not necessarily track in a universal way with the scale of cooperative motion in glass-forming liquids. Finally, we find that factors such as composition gradients or variability in measurement sensitivity to different parts of the dynamic gradient have the potential to significantly confound efforts to identify trends in T-nanoconfinement effects with variables such as fragility, emphasizing the importance of employing diverse data sets and multiple metrologies in the study of this problem.
The dynamics of semidilute polymer solutions are important to many polymer solution processing techniques such as fiber spinning and solution printing. The out-of-equilibrium molecular conformations resulting from processing flows directly impact material properties. Brownian dynamics (BD) simulations are a standard technique for studying this connection between polymer conformations in solution and processing flows because they can capture molecular-level polymer dynamics. However, BD simulations of semidilute polymer solutions are computationally limited by the calculation of hydrodynamic interactions (HIs) via an Ewald summed diffusion tensor and stochastic Brownian displacements via the decomposition of the diffusion tensor. Techniques based on the Cholesky decomposition scale with the number of particles N as O(N3) and approximations in the literature have reduced this scaling to as low as O(N). These methods still require continuous updating of the diffusion tensor and Brownian displacements, resulting in a significant constant per-time step cost. Previously, we introduced a method that avoids this cost for dilute polymer solutions by iterative conformational averaging (CA) of intramolecular HIs. In this work, we extend the CA method to semidilute solutions by introducing a grid-space average of intermolecular HIs and a pairwise approximation to the Brownian displacements based on the truncated expansion ansatz of Geyer and Winter. We evaluate our method by first comparing the computational cost with that of other simulation techniques. We verify our approximations by comparison with expected results for static and dynamic properties at equilibrium and use our method to demonstrate the concentration dependence of HI screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.