The wound healing assay is a commonly used technique to measure cell motility and migration. Traditional methods of performing the wound healing assay suffer from low throughput and a lack of quantitative data analysis. We have developed a new method to perform a high-throughput wound healing assay that produces quantitative data using the LEAP™ instrument. The LEAP™ instrument is used to create reproducible wounds in each well of a 96-well plate by laser ablation. The LEAP™ then records bright field images of each well at several time points. A custom texture segmentation algorithm is used to determine the wound area of each well at each time point. This texture segmentation analysis can provide faster and more accurate image analysis than traditional methods. Experimental results show that reproducible wounds are created by laser ablation with a wound area that varies by less than 10%. This method was tested by confirming that neuregulin-2β increases the rate of wound healing by MCF7 cells in a dose dependent manner. This automated wound healing assay has greatly improved the speed and accuracy, making it a suitable high-throughput method for drug screening.
ErbB4 is a member of the ErbB family of receptor tyrosine kinases. This family includes ErbB2 (HER2/Neu), a validated therapeutic target in breast cancer. Several studies indicate that ErbB4 functions as a tumor suppressor in breast cancer, whereas others indicate that ErbB4 functions as an oncogene. Here the authors explore the context in which ErbB4 functions as an oncogene. Silencing expression of either ErbB2 or ErbB4 in breast tumor cell lines results in reduced stimulation of anchorage independence and cell motility by the ErbB4 agonist neuregulin 2β. ErbB2 tyrosine kinase activity, but not ErbB4 tyrosine kinase activity, is required for neuregulin 2β to stimulate cell proliferation. Moreover, sites of ErbB4 tyrosine phosphorylation, but not sites of ErbB2 tyrosine phosphorylation, are required for neuregulin 2β to couple to cell proliferation. These data suggest that targeting ErbB2 expression or tyrosine kinase activity may be effective in treating ErbB4-dependent breast tumors, even those tumors that lack ErbB2 overexpression.
Current methods to screen for bacterial contamination involve using costly reagents such as antibodies or PCR reagents or time-costly growth in cultures. There is need for portable, real-time, multiplex pathogen detection technology that can predict the safety of food. Surface plasmon resonance (SPR) imaging is a sensitive, label-free method that can detect the binding of an analyte to a surface by the changes in refractive index that occur upon binding. We have designed a hybrid microfluidic biochip to perform multiplexed detection of single-celled pathogens using a combination of SPR and fluorescence imaging. The device consists of an array of gold spots, each functionalized with a capture biomolecule targeting a specific pathogen. This biosensor array is enclosed by a polydimethylsiloxane microfluidic flow chamber that delivers a magnetically concentrated sample to be tested. The sample is imaged by SPR on the bottom of the biochip and epi-fluorescence on the top. The prototype instrument was successfully able to image antibody-captured E. coli O157:H7 bacteria by SPR and fluorescence imaging. The efficiency of capture of these bacteria by the magnetic particles was determined using spectrophotometric ferric oxide absorbance measurements. The binding of the E. coli to each spot was quantified by measuring the percent of the gold spot area upon which the bacteria was bound and analyzed using NIH ImageJ software. This hybrid imaging approach of pathogenic E. coli detection coupled with an estimate of relative infectivity is shown to be a working example of a testing device for potential foodborne pathogens. ' International Society for Advancement of CytometryKey terms foodborne pathogens; microbes; detection; microfluidic; cytometry; imaging; surface plasmon resonance; E. coli O157:H7 THE increased incidence of fatal pathogen-contaminated food supplies places a new emphasis on the rapid detection and quantification of the foodborne pathogens. This issue has been further compounded by the fact that many high-risk foodborne pathogens are easily transmitted through food supplies, thus constituting a major public health problem. Accurate and rapid identification of pathogens in food is to facilitate timely and appropriate actions in the event of a contamination. Conventional pathogen detection methods involve enriching the sample and performing various mediabased metabolic tests (1). These detection methods are elaborate and typically require 2-7 days to obtain results. Detection using magnetic beads coated with pathogenspecific antibodies or enzyme-linked immunosorbent assays still require several hours for completing the tests (2,3). The oligonucleotide array method based on amplification and hybridization of DNA fragments of pathogenic bacteria also takes more than several hours (4). Some techniques also require rather expensive special instruments, such as flow cytometry (5) and real-time PCR (6). Hence, a rapid, label-free, and easy-to-use biosensor capable of detecting toxigenic bacteria in a few mi...
Due to a number of recent technological advances, a hand-held flow cytometer can be achieved by use of semiconductor illuminators, optical sensors (all battery powered) and sensitive cell markers such as immuno-quantum dot (Qdot) labels. The specific application described is of a handheld blood analyzer that can quickly process a drop of whole, unfractionated human peripheral blood by real-time, on-chip magnetic separation of white blood cells (WBCs) and red blood cells (RBCs) and further fluorescence analysis of Qdot labeled WBC subsets. Various microfluidic patterns were fabricated in PDMS and used to characterize flow of single cells and magnetic deflection of magnetically labeled cells. An LED excitation, avalanche photodiode detection system (SensL Technologies, Ltd., Cork, Ireland) was used for immuno-Qdot detection of WBC subsets. A static optical setup was used to determine the sensitivity of the detection system. In this work we demonstrate: valve-less, on-chip magnetic sorting of immunomagnetically labeled white blood cells, bright Qdot labeling of lymphocytes, and counting of labeled white blood cells. Comparisons of these results with conventional flow cytometric analyses are reported. Sample preparation efficiency was determined by labeling of isolated white blood cells. Appropriate flow rates were determined for optical detection and confirmed with flowing particles. Several enabling technologies required for a truly portable, battery powered, hand-held flow cytometer for use in future point-of-care diagnostic devices have been demonstrated. The combining of these technologies into an integrated handheld instrument is in progress and results on whole blood cell analysis are to be reported in another paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.