There is a growing interest in the effectiveness of mindfulness meditation for sleep disturbed populations. Our study sought to evaluate the effect of mindfulness meditation interventions on sleep quality. To assess for relative efficacy, comparator groups were restricted to specific active controls (such as evidenced‐based sleep treatments) and nonspecific active controls (such as time/attention‐matched interventions to control for placebo effects), which were analyzed separately. From 3303 total records, 18 trials with 1654 participants were included. We determined the strength of evidence using four domains (risk of bias, directness of outcome measures, consistency of results, and precision of results). At posttreatment and follow‐up, there was low strength of evidence that mindfulness meditation interventions had no effect on sleep quality compared with specific active controls (ES 0.03 (95% CI –0.43 to 0.49)) and (ES –0.14 (95% CI –0.62 to 0.34)), respectively. Additionally, there was moderate strength of evidence that mindfulness meditation interventions significantly improved sleep quality compared with nonspecific active controls at postintervention (ES 0.33 (95% CI 0.17–0.48)) and at follow‐up (ES 0.54 (95% CI 0.24–0.84)). These preliminary findings suggest that mindfulness meditation may be effective in treating some aspects of sleep disturbance. Further research is warranted.
Advances in mobile technology have led to the emergence of the “smartphone”, a new class of device with more advanced connectivity features that have quickly made it a constant presence in our lives. Smartphones are equipped with comparatively advanced computing capabilities, a global positioning system (GPS) receivers, and sensing capabilities (i.e., an inertial measurement unit (IMU) and more recently magnetometer and barometer) which can be found in wearable ambulatory monitors (WAMs). As a result, algorithms initially developed for WAMs that “count” steps (i.e., pedometers); gauge physical activity levels; indirectly estimate energy expenditure and monitor human movement can be utilised on the smartphone. These algorithms may enable clinicians to “close the loop” by prescribing timely interventions to improve or maintain wellbeing in populations who are at risk of falling or suffer from a chronic disease whose progression is linked to a reduction in movement and mobility. The ubiquitous nature of smartphone technology makes it the ideal platform from which human movement can be remotely monitored without the expense of purchasing, and inconvenience of using, a dedicated WAM. In this paper, an overview of the sensors that can be found in the smartphone are presented, followed by a summary of the developments in this field with an emphasis on the evolution of algorithms used to classify human movement. The limitations identified in the literature will be discussed, as well as suggestions about future research directions.
Morbidity and falls are problematic for older people. Wearable devices are increasingly used to monitor daily activities. However, sensors often require rigid attachment to specific locations and shuffling or quiet standing may be confused with walking. Furthermore, it is unclear whether clinical gait assessments are correlated with how older people usually walk during daily life. Wavelet transformations of accelerometer and barometer data from a pendant device worn inside or outside clothing were used to identify walking (excluding shuffling or standing) by 51 older people (83 ± 4 years) during 25 min of 'free-living' activities. Accuracy was validated against annotated video. Training and testing were separated. Activities were only loosely structured including noisy data preceding pendant wearing. An electronic walkway was used for laboratory comparisons. Walking was classified (accuracy ≥97 %) with low false-positive errors (≤1.9%, κ ≥ 0.90). Median free-living cadence was lower than laboratory-assessed cadence (101 vs. 110 steps/min, p < 0.001) but correlated (r = 0.69). Free-living step time variability was significantly higher and uncorrelated with laboratory-assessed variability unless detrended. Remote gait impairment monitoring using wearable devices is feasible providing new ways to investigate morbidity and falls risk. Laboratory-assessed gait performances are correlated with free-living walks, but likely reflect the individual's 'best' performance.
Automatic recognition of human activity is useful as a means of estimating energy expenditure and has potential for use in fall detection and prediction. The emergence of the smartphone as a ubiquitous device presents an opportunity to utilize its embedded sensors, computational power and data connectivity as a platform for continuous health monitoring. In the study described herein, 37 older people (83.9 ± 3.4 years) performed a series of activities of daily living (ADLs) while a smartphone (containing a triaxial accelerometer, triaxial gyroscope and barometric pressure sensor) was placed in the front pocket of their trousers. These results are compared to a similar trial conducted previously in which 20 young people (21.9 ± 1.65 years) were asked to perform the same ADLs using the same smartphone (again in the front pocket of their trousers).In each trial, the participants were asked to perform several activities (standing, sitting, lying, walking on level ground, up and down staircases, and riding an elevator up and down) in a free-living environment. During each acquisition session, the internal sensor signals were recorded and subsequently used to develop activity classifiers based on a decision tree algorithm that classified ADL in epochs of ~1.25 s. When training and testing with the younger cohort, using a leave-one-out cross validation procedure, a total classification sensitivity of 80.9% ± 9.57% ([Formula: see text] = 0.75 ± 0.12) was obtained. Retraining and testing on the older cohort, again using cross validation, gives a comparable total class sensitivity of 82.0% ± 8.88% ([Formula: see text] =0.74 ± 0.12).When trained with the younger group and tested on the older group, a total class sensitivity of 69.2% ± 24.8% (95% confidence interval [69.6%, 70.6%]) and [Formula: see text] = 0.60 ± 0.27 (95% confidence interval [0.58, 0.59]) was obtained. When trained on the older group and tested on the younger group, a total class sensitivity of 80.5% ± 6.80% (95% confidence interval [79.0%, 80.6%]) and [Formula: see text] = 0.74 ± 0.08 (95% confidence interval [0.73, 0.75]) was obtained.An instance of the decision tree classifier developed was implemented on the smartphone as a software application. It was capable of performing real-time activity classification for a period of 17 h on a single battery charge, illustrating that smartphone technology provides a viable platform on which to perform long-term activity monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.