We prove quantitative bounds on the eigenvalues of non-selfadjoint unbounded operators obtained from selfadjoint operators by a perturbation that is relatively-Schatten. These bounds are applied to obtain new results on the distribution of eigenvalues of Schrödinger operators with complex potentials.
The central problem we consider is the distribution of eigenvalues of closed linear operators which are not selfadjoint, with a focus on those operators which are obtained as perturbations of selfadjoint linear operators. Two methods are explained and elaborated. One approach uses complex analysis to study a holomorphic function whose zeros can be identified with the eigenvalues of the linear operator. The second method is an operator theoretic approach involving the numerical range. General results obtained by the two methods are derived and compared. Applications to non-selfadjoint Jacobi and Schrödinger operators are considered. Some possible directions for future research are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.