Peri-operative RBC transfusion after CABG is associated with an increased risk of mortality during a 1-year follow-up period, with a large proportion of deaths occurring within 30-days.
BackgroundDespite lithium being the most efficacious treatment for bipolar disorder, its use has been decreasing at least in part due to concerns about its potential to cause significant nephrotoxicity. Whilst the ability of lithium to cause nephrogenic diabetes insipidus is well established, its ability to cause chronic kidney disease is a much more vexing issue, with various studies suggesting both positive and negative causality. Despite these differences, the weight of evidence suggests that lithium has the potential to cause end stage kidney disease, albeit over a prolonged period.MethodsA search strategy for this review was developed to identify appropriate studies, sourced from the electronic databases EMBASE, PubMed (NLM) and MEDLINE. Search terms included lithium with the AND operator to combine with nephrotoxicity or nephropathy or chronic kidney disease or nephrogenic diabetes insipidus or renal and pathophysiology.ResultsThe risks for the development of lithium induced nephropathy are less well defined but appear to include the length of duration of therapy as well as increasing age, as well as episodes of over dosage/elevated lithium levels. Whilst guidelines exist for the routine monitoring of lithium levels and renal function, it remains unclear when nephrological evaluation should occur, as well as when cessation of lithium therapy is appropriate balancing the significant attendant mental health risks as well as the potential for progression to occur despite cessation of therapy against the risks and morbidity of bipolar disorder itself.ConclusionThis paper will elucidate on the current evidence pertaining to the topic of the clinical management of lithium induced nephrotoxicity and provide a guide for clinicians who are faced with the long-term management of these patients.
The research presented in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Researchers used digital image correlation, shearography, acoustic emission, fiber-optic strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. This article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.
Deficiency of the intrinsic lysosomal protein human scavenger receptor class B, member 2 (SCARB2; Limp-2 in mice) causes collapsing focal and segmental glomerular sclerosis (FSGS) and myoclonic epilepsy in humans, but patients with no apparent kidney damage have recently been described. We now demonstrate that these patients can develop tubular proteinuria. To determine the mechanism, mice deficient in Limp-2, the murine homolog of SCARB2, were studied. Most low-molecular-weight proteins filtered by the glomerulus are removed in the proximal convoluted tubule (PCT) by megalin/cubilin-dependent receptor-mediated endocytosis. Expression of megalin and cubilin was unchanged in Limp-2(-/-) mice, however, and the initial uptake of injected Alexa Fluor 555-conjugated bovine serum albumin (Alexa-BSA) was similar to wild-type mice, indicating that megalin/cubilin-dependent, receptor-mediated endocytosis was unaffected. There was a defect in proteolysis of reabsorbed proteins in the Limp-2(-/-) mice, demonstrated by the persistence of Alexa-BSA in the PCT compared with controls. This was associated with the failure of the lysosomal protease cathepsin B to colocalize with Alexa-BSA and endogenous retinol-binding protein in kidneys from Limp-2(-/-) mice. The data suggest that tubular proteinuria in Limp-2(-/-) mice is due to failure of endosomes containing reabsorbed proteins to fuse with lysosomes in the proximal tubule of the kidney. Failure of proteolysis is a novel mechanism for tubular proteinuria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.