In order to increase the penetration of electric vehicles, a network of fast
charging stations that can provide drivers with a certain level of quality of
service (QoS) is needed. However, given the strain that such a network can
exert on the power grid, and the mobility of loads represented by electric
vehicles, operating it efficiently is a challenging problem. In this paper, we
examine a network of charging stations equipped with an energy storage device
and propose a scheme that allocates power to them from the grid, as well as
routes customers. We examine three scenarios, gradually increasing their
complexity. In the first one, all stations have identical charging capabilities
and energy storage devices, draw constant power from the grid and no routing
decisions of customers are considered. It represents the current state of
affairs and serves as a baseline for evaluating the performance of the proposed
scheme. In the second scenario, power to the stations is allocated in an
optimal manner from the grid and in addition a certain percentage of customers
can be routed to nearby stations. In the final scenario, optimal allocation of
both power from the grid and customers to stations is considered. The three
scenarios are evaluated using real traffic traces corresponding to weekday rush
hour from a large metropolitan area in the US. The results indicate that the
proposed scheme offers substantial improvements of performance compared to the
current mode of operation; namely, more customers can be served with the same
amount of power, thus enabling the station operators to increase their
profitability. Further, the scheme provides guarantees to customers in terms of
the probability of being blocked by the closest charging station. Overall, the
paper addresses key issues related to the efficient operation of a network of
charging stations.Comment: Published in IEEE Journal on Selected Areas in Communications July
201
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.