Solar variability has been hypothesized to be a major driver of North Atlantic millennial-scale climate variations through the Holocene along with orbitally induced insolation change. However, another important climate driver, volcanic forcing has generally been underestimated prior to the past 2,500 years partly owing to the lack of proper proxy temperature records. Here, we reconstruct seasonally unbiased and physically constrained Greenland Summit temperatures over the Holocene using argon and nitrogen isotopes within trapped air in a Greenland ice core (GISP2). We show that a series of volcanic eruptions through the Holocene played an important role in driving centennial to millennial-scale temperature changes in Greenland. The reconstructed Greenland temperature exhibits significant millennial correlations with K+ and Na+ ions in the GISP2 ice core (proxies for atmospheric circulation patterns), and δ18O of Oman and Chinese Dongge cave stalagmites (proxies for monsoon activity), indicating that the reconstructed temperature contains hemispheric signals. Climate model simulations forced with the volcanic forcing further suggest that a series of large volcanic eruptions induced hemispheric-wide centennial to millennial-scale variability through ocean/sea-ice feedbacks. Therefore, we conclude that volcanic activity played a critical role in driving centennial to millennial-scale Holocene temperature variability in Greenland and likely beyond.
The ab initio understanding of hadronic three-body systems above threshold, such as exotic resonances or the baryon spectrum, requires the mapping of the finite-volume eigenvalue spectrum, produced in lattice QCD calculations, to the infinite volume. We present the first application of such a formalism to a physical system in form of three interacting positively charged pions. The results for the ground state energies agree with the available lattice QCD results by the NPLQCD collaboration at unphysical pion masses. Extrapolations to physical pion masses are performed using input from effective field theory. The excited energy spectrum is predicted. This demonstrates the feasibility to determine three-body amplitudes above threshold from lattice QCD, including resonance properties of axial mesons, exotics, and excited baryons.
The flavor-changing neutral current process b → sl + l − is beneficial to testing the standard model and hunting for new physics scenarios. In exclusive decay modes like B → K * (892)l + l − , the S-wave effects may not be negligible and thus have to be reliably estimated. Using the scalar form factors derived from dispersion relations in two channels and matched to Chiral Perturbation Theory, we investigate the S-wave contributions in Bwith the Kπ invariant mass lying in the vicinity of the mass of K * (892), and the Bs → K − K + l + l − with mKK ∼ m φ . We find that the S-wave will modify differential decay widths by about 10% in the process of BA forward-backward asymmetry for the charged kaon in the final state arises from the interference between the S-wave and P-wave contributions. The measurement of this asymmetry offers a new way to determine the variation of the Kπ S-wave phase versus the invariant mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.