How are biological structures maintained in a cellular environment that constantly threatens protein integrity? Here we elucidate proteostasis mechanisms affecting the Z disk, a protein assembly essential for actin anchoring in striated muscles, which is subjected to mechanical, thermal, and oxidative stress during contraction [1]. Based on the characterization of the Drosophila melanogaster cochaperone Starvin (Stv), we define a conserved chaperone machinery required for Z disk maintenance. Instead of keeping Z disk proteins in a folded conformation, this machinery facilitates the degradation of damaged components, such as filamin, through chaperone-assisted selective autophagy (CASA). Stv and its mammalian ortholog BAG-3 coordinate the activity of Hsc70 and the small heat shock protein HspB8 during disposal that is initiated by the chaperone-associated ubiquitin ligase CHIP and the autophagic ubiquitin adaptor p62. CASA is thus distinct from chaperone-mediated autophagy, previously shown to facilitate the ubiquitin-independent, direct translocation of a client across the lysosomal membrane [2]. Impaired CASA results in Z disk disintegration and progressive muscle weakness in flies, mice, and men. Our findings reveal the importance of chaperone-assisted degradation for the preservation of cellular structures and identify muscle as a tissue that highly relies on an intact proteostasis network, thereby shedding light on diverse myopathies and aging.
Molecular chaperones are well known as facilitators of protein folding and assembly. However, in recent years multiple chaperone-assisted degradation pathways have also emerged, including CAP ( haperone-ssisted roteasomal degradac a p tion), CASA ( haperone-ssisted elective utophagy), and c a s a CMA ( haperone-ediated utophagy). Within these pathc m a ways chaperones facilitate the sorting of non-native proteins to the proteasome and the lysosomal compartment for disposal. Impairment of these pathways contributes to the development of cancer, myopathies, and neurodegenerative diseases. Chaperone-assisted degradation thus represents an essential aspect of cellular proteostasis, and its pharmacological modulation holds the promise to ameliorate some of the most devastating diseases of our time. Here, we discuss recent insights into molecular mechanisms underlying chaperone-assisted degradation in mammalian cells and highlight its biomedical relevance.
The neural cell adhesion molecule (NCAM) is involved in neural development and in plasticity in the adult brain. NCAM140 and NCAM180 isoforms are transmembrane proteins with cytoplasmic domains that differ only in an alternatively spliced exon in the NCAM180 isoform. Both isoforms can interact with several extracellular and cytoplasmic molecules mediating NCAM-dependent functions. Most identified intracellular interaction partners bind to both isoforms, NCAM140 and NCAM180. To identify further intracellular interaction partners specifically binding to NCAM180 the cytosolic domain of human NCAM180 was recombinantly expressed and applied onto a protein macroarray containing the protein library from human fetal brain. We identified the ubiquitin C-terminal hydrolase (UCHL1) which has been described as a de-ubiquitinating enzyme as a potential interaction partner of NCAM180. Since NCAM180 and NCAM140 are ubiquitinated, NCAM140 was included in the subsequent experiments. A partial colocalization of both NCAM isoforms and UCHL1 was observed in primary neurons and the B35 neuroblastoma cell line. Overexpression of UCHL1 significantly decreased constitutive ubiquitination of NCAM180 and NCAM140 whereas inhibition of endogenous UCHL1 increased NCAM's ubiquitination. Furthermore, lysosomal localization of NCAM180 and NCAM140 was significantly reduced after overexpression of UCHL1 consistent with a partial colocalization of internalized NCAM with UCHL1. These data indicate that UCHL1 is a novel interaction partner of both NCAM isoforms that regulates their ubiquitination and intracellular trafficking. Structured digital abstractNCAM1 binds to UCHL1 by protein array (View interaction) Uchl1 and NCAM180 colocalize by fluorescence microscopy (View interaction) Uchl1 and NCAM1 colocalize by fluorescence microscopy (View interaction) Uchl1 and NCAM140 colocalize by fluorescence microscopy (View interaction)
Genetic studies have linked the evolutionary novel, anthropoid primate-specific gene locus G72/G30 in the etiology of schizophrenia and other psychiatric disorders.However, the function of the protein encoded by this locus, LG72, is currently controversially discussed. Some studies have suggested that LG72 binds to and regulates the activity of the peroxisomal enzyme D-amino-acid-oxidase, while others proposed an alternative role of this protein due to its mitochondrial location in vitro.Studies with transgenic mice expressing LG72 further suggested that high levels ofLG72 lead to an impairment of mitochondrial functions with a concomitant increase in reactive oxygen species (ROS) production. In the present study we now performed extensive interaction analyses and identified the mitochondrial methionine-Rsulfoxide reductase B2 (MSRB2) as a specific interaction partner of LG72. MSRB2 belongs to the MSR protein family and functions in mitochondrial oxidative stress defense. Based on our results we propose that LG72 is involved in the regulation of mitochondrial oxidative stress.
Molecular chaperones are traditionally viewed as cellular protein folding and assembly factors. However, in recent years it became more and more evident that certain chaperones, i.e., members of the 70-kDa heat shock protein family (Hsp70s), participate very actively in protein degradation and in this way significantly contribute to protein homeostasis. Degradation is often initiated through a close cooperation of Hsp70s with chaperone-associated ubiquitin ligases. This results in the ubiquitylation of chaperone-bound client proteins and triggers client sorting toward the proteasome or the autophagosome-lysosome system. Here, we describe the in vitro reconstitution of chaperone-assisted ubiquitylation, which allows analyzing molecular details of this important proteostasis mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.