The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders,
1 The dispersal mode adopted by a plant species is frequently associated with other attributes of the plant and its habitat. In this paper we review these associations and present a set of hypotheses which, when considered together, make a probabilistic prediction of the dispersal mode adopted by a plant species. When applied to a species list, the hypotheses can be used to generate a prediction of its dispersal spectrum, i.e. the percentages of different dispersal modes that have been adopted. 2 The formulation of such a set of hypotheses has several purposes: (i) to summarize existing knowledge about dispersal adaptations and their interrelations with other attributes of plants and their habitats; (ii) to couch that knowledge in such a way that falsifiable predictions can be made; (iii) to arrive at provisional conclusions about which factors are the most important in shaping the evolution of dispersal mode in different plants or different environments. 3 The review of relationships between dispersal mode and other attributes of plants and their habitats lead to the following provisional conclusions; (i) seeds larger than 100 mg tend to be adapted for dispersal by vertebrates while those smaller than 0.1 mg tend to be unassisted; most seeds, however, are between 0.1 and 100 mg, and in this range all of the dispersal modes are feasible; (ii) plant growth form and stature (sometimes in relation to the canopy height of the vegetation) seem to exclude certain dispersal modes; (iii) the availability of specific dispersal vectors seems rarely to be an important determinant of dispersal mode; (iv) attributes of the physical environment also seem rarely to be important, except indirectly through their influence on plant stature and seed size.
Ecosystem services are typically valued for their immediate material or cultural benefits to human wellbeing, supported by regulating and supporting services. Under climate change, with more frequent stresses and novel shocks, 'climate adaptation services', are defined as the benefits to people from increased social ability to respond to change, provided by the capability of ecosystems to moderate and adapt to climate change and variability. They broaden the ecosystem services framework to assist decision makers in planning for an uncertain future with new choices and options. We present a generic framework for operationalising the adaptation services concept. Four steps guide the identification of intrinsic ecological mechanisms that facilitate the maintenance and emergence of ecosystem services during periods of change, and so materialise as adaptation services. We applied this framework for four contrasted Australian ecosystems. Comparative analyses enabled by the operational framework suggest that adaptation services that emerge during trajectories of ecological change are supported by common mechanisms: vegetation structural diversity, the role of keystone species or functional groups, response diversity and landscape connectivity, which underpin the persistence of function and the reassembly of ecological communities under severe climate change and variability. Such understanding should guide ecosystem management towards adaptation planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.