Substituting the P1 position in bovine pancreatic trypsin inhibitor (BPTI) is known to heavily influence its inhibitory activity towards serine proteases. Side-chain fluorinated aliphatic amino acids have been shown to...
Fluorinated amino acids play an important role in the field of peptide and protein engineering. Although numerous syntheses have been published in recent decades, strategies that allow routine access to fluorinated amino acids on a gram-scale have been poorly described. Furthermore, the described pathways that gain fluorinated amino acids are based on different synthetic strategies, making a uniform approach that uses similar starting materials highly beneficial. Chiral Ni(II) complexes were introduced as powerful tools in the synthesis of noncanonical amino acids. In this work, we present a strategy for the synthesis of a diverse range of fluorinated amino acids based on the corresponding Ni(II) complex from which the products can be obtained in enantiopure form (99% ee) on a gram-scale. In addition, we describe an optimized procedure for the synthesis of alkyl iodide building blocks that are required for the alkylation reactions with the corresponding Ni(II) complex. Finally, we characterized the synthesized fluorinated amino acids with regard to their hydrophobicity and α-helix propensity.
Fluorinated amino acids play an important role in the field of peptide and protein engineering. Although several different syntheses have been published in recent decades, obtaining fluorinated amino acids on a gram-scale still poses a challenge. Furthermore, the described pathways to obtain fluorinated amino acids are based on different synthetic strategies, making a uniform approach from similar starting materials highly interesting. Chiral Ni(II) complexes were introduced as powerful tools in the synthesis of non-canonical amino acids. In this work, we present a strategy for the synthesis of a diverse range of fluorinated amino acids from the corresponding Ni(II) complex on a gram-scale from which the products can be obtained in enantiopure form (>94%ee). In addition, we describe syntheses for alkyl iodide building blocks which are required for the alkylation reactions with the corresponding Ni(II) complex. Finally, we characterized the synthesized fluorinated amino acids with regard to their hydrophobicity and α-helix propensity.
Substituting the P1 position in bovine pancreatic trypsin inhibitor (BPTI) is known to heavily influence its inhibitory activity towards serine proteases. Side-chain fluorinated aliphatic amino acids have been shown to alter numerous properties of peptides and proteins and thus are of interest in the context of BPTI. In our study, we systematically investigated the site-specific incorporation of non-canonical amino acids into BPTI by microwave-assisted solid-phase peptide synthesis (SPPS). Inhibitor activity of the variants was tested towards the serine protease α-chymotrypsin. We observed enhanced inhibition of two fluorinated BPTIs compared to wild type and hydrocarbon variants. To further investigate the complexes, we performed x-ray structure analysis. Our findings underline the power fluorine offers as a tool in protein engineering to beneficially alter the effects on phenomena as protein-protein interactions.
Substituting the P1 position in bovine pancreatic trypsin inhibitor (BPTI) is known to heavily influence its inhibitory activity towards serine proteases. Side-chain fluorinated aliphatic amino acids have been shown to alter numerous properties of peptides and proteins and thus are of interest in the context of BPTI. In our study, we systematically investigated the site-specific incorporation of non-canonical amino acids into BPTI by microwave-assisted solid-phase peptide synthesis (SPPS). Inhibitor activity of the variants was tested towards the serine protease α-chymotrypsin. We observed enhanced inhibition of two fluorinated BPTIs compared to wild type and hydrocarbon variants. To further investigate the complexes, we performed x-ray structure analysis. Our findings underline the power fluorine offers as a tool in protein engineering to beneficially alter the effects on phenomena as protein-protein interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.