The synthesis of a series of novel pyrazoles containing a nitrate (ONO(2)) moiety as a nitric oxide (NO)-donor functionality is reported. Their COX-1 and COX-2 inhibitory activities in human whole blood are profiled. Our data demonstrate that pyrazole ring substituents play an important role in COX-2 selective inhibition, such that a cycloalkyl pyrazole (6b) was found to be a potent and selective COX-2 inhibitor. Other modifications at the 3 position of the central pyrazole ring (17b, 23b, 26b-I) enhanced COX-2 inhibitory potency. Among the pyrazoles synthesized, the oxime (23b) was identified as the most potent COX-2 selective inhibitor. Accordingly, 23b was profiled pharmacologically in the rat after oral administration and shown to possess potent antiinflammatory activity in the carrageenan-induced air-pouch model and less gastric toxicity than a standard COX-2 inhibitor when administered with background aspirin treatment. We suggest that the enhanced gastric tolerance of an NO-donor COX-2 selective inhibitor has the potential to augment the clinical profile of this drug class.
Indomethacin, a nonselective cyclooxygenase (COX) inhibitor, was modified in three distinct regions in an attempt both to increase cyclooxygenase-2 (COX-2) selectivity and to enhance drug safety by covalent attachment of an organic nitrate moiety as a nitric oxide donor. A human whole-blood COX assay shows the modifications on the 3-acetic acid part of the indomethacin yielding an amide-nitrate derivative 32 and a sulfonamide-nitrate derivative 61 conferred COX-2 selectivity. Along with their respective des-nitrate analogs, for example, 31 and 62, the nitrates 32 and 61 were effective antiinflammatory agents in the rat air-pouch model. After oral dosing, though, only 32 increased nitrate and nitrite levels in rat plasma, indicating that its nitrate tether served as a nitric oxide donor in vivo. In a rat gastric injury model, examples 31 and 32 both show a 98% reduction in gastric lesion score compared to that of indomethacin. In addition, the nitrated derivative 32 inducing 85% fewer gastric lesions when coadministered with aspirin as compared to the combination of aspirin and valdecoxib.
The random amino acid copolymer poly(Y,E,A,K)n (Copaxone®) is widely used in multiple sclerosis treatment and a second generation copolymer poly(Y,F,A,K)n with enhanced efficacy in experimental autoimmune encephalomyelitis in mice has been described. A major mechanism through which copolymers function to ameliorate disease is the generation of immunosuppressive IL-10-secreting regulatory T cells entering the CNS. In addition, the antigen presenting cell to which these copolymers bind through MHC Class II proteins may have an important role. Here, both CCL22 (a Th2 cell chemoattractant) in large amounts and CXCL13 in much smaller amounts are shown to be secreted after administration of YFAK to mice and to a smaller extent by YEAK parallel to their serum concentrations. Moreover, bone marrow-derived macrophages secrete CCL22 in vitro in response to YFAK and to higher concentrations of YEAK. Strikingly, these chemokines are also secreted into serum of MHC Class II −/− mice, indicating that an innate immune receptor on these cells also has an important role. Thus, both the innate and the adaptive immune systems are involved in the mechanism of EAE amelioration by YFAK. The enhanced ability of YFAK to stimulate the innate immune system may account for its enhanced efficacy in EAE treatment.
PI-2301 is an immunomodulator that could be an alternative therapy for MS. A placebo-controlled, multiple-ascending dose, double-blind study was performed in patients with secondary-progressive MS. Treatment was given subcutaneously once weekly for 8 weeks, followed by a 4-week open-label treatment period with active drug. The most common adverse event was transient injection site reactions. Non-significant trend for increases in serum levels of IL-3, IL-13, and CCL22 over time were suggestive of a beneficial T(H)2 immune response in subjects dosed with PI-2301 at 3 and 10 mg. MRI data indicated a non-significant trend for a reduction of lesion numbers in subjects treated with 1 and 3 mg PI-2301.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.