Purpose A first-in-human pilot safety and feasibility trial evaluating chimeric antigen receptor (CAR) engineered, autologous primary human CD8+ cytolytic T lymphocytes (CTLs) targeting IL13Rα2 for the treatment of recurrent glioblastoma (GBM). Experimental Design Three patients with recurrent GBM were treated with IL13(E13Y)-zetakine CD8+ CTL targeting IL13Rα2. Patients received up to twelve local infusions at a maximum dose of 108 CAR-engineered T cells via a catheter/reservoir system. Results We demonstrate the feasibility of manufacturing sufficient numbers of autologous CTL clones expressing an IL13(E13Y)-zetakine CAR for redirected HLA-independent IL13Rα2-specific effector function for a cohort of patients diagnosed with GBM. Intracranial delivery of the IL13-zetakine+ CTL clones into the resection cavity of three patients with recurrent disease was well-tolerated, with manageable temporary CNS inflammation. Following infusion of IL13-zetakine+ CTLs, evidence for transient anti-glioma responses was observed in two of the patients. Analysis of tumor tissue from one patient before and after T cell therapy suggested reduced overall IL13Rα2 expression within the tumor following treatment. MRI analysis of another patient indicated an increase in tumor necrotic volume at the site of IL13-zetakine+ T cell administration. Conclusion These findings provide promising first-in-human clinical experience for intracranial administration of IL13Rα2-specific CAR T cells for the treatment of GBM, establishing a foundation on which future refinements of adoptive CAR T cell therapies can be applied.
SUMMARY1. Ionic currents were studied in immature full-grown Xenopus oocytes using the two-micro-electrode voltage-clamp technique.2. Recordings of total membrane current showed a transient outward peak during depolarizations from the approximate resting voltage (-70 or -80 mV) to voltages more positive than -20 mV. The current-voltage relation for peak outward current was nl-shaped, with a maximum at about 0 mV. 7. Increasing the external Ca concentration increased the amplitude of the transient outward current without affecting the amplitude of the steady-state current.8. It was concluded that the outward peak in records of total membrane current represented the contribution of a transient outward current carried by C1 ions which was dependent on the entry of external Ca. It will be noted as ICi(Ca)* 9. Decay of ICI(Ca) could be described at the normal Ca concentration by a single exponential function whose time constant showed a shallow U-shaped voltage dependence.10. ICI(ca) was maximally activatable by depolarizations from a holding potential of about -100 mV, but could not be activated by depolarizations from -40 mV.11. The amplitude of Icl(Ca) showed a large temperature dependence as compared to the steady-state current, suggesting complex control of its activation.
T cell immunotherapy is emerging as a powerful strategy to treat cancer and may improve outcomes for patients with glioblastoma (GBM). We have developed a chimeric antigen receptor (CAR) T cell immunotherapy targeting IL-13 receptor α2 (IL13Rα2) for the treatment of GBM. Here, we describe the optimization of IL13Rα2-targeted CAR T cells, including the design of a 4-1BB (CD137) co-stimulatory CAR (IL13BBζ) and a manufacturing platform using enriched central memory T cells. Utilizing orthotopic human GBM models with patient-derived tumor sphere lines in NSG mice, we found that IL13BBζ-CAR T cells improved anti-tumor activity and T cell persistence as compared to first-generation IL13ζ-CAR CD8 T cells that had shown evidence for bioactivity in patients. Investigating the impact of corticosteroids, given their frequent use in the clinical management of GBM, we demonstrate that low-dose dexamethasone does not diminish CAR T cell anti-tumor activity in vivo. Furthermore, we found that local intracranial delivery of CAR T cells elicits superior anti-tumor efficacy as compared to intravenous administration, with intraventricular infusions exhibiting possible benefit over intracranial tumor infusions in a multifocal disease model. Overall, these findings help define parameters for the clinical translation of CAR T cell therapy for the treatment of brain tumors.
High-grade gliomas are extremely difficult to treat because they are invasive and therefore are not curable by surgical resection; the toxicity of currently chemo- and radiation therapies limits the doses that can be used. Neural stem cells (NSCs) have inherent tumor-tropic properties that enable their use as delivery vehicles that can target enzyme/prodrug therapy selectively to tumors. We have used a cytosine deaminase (CD)-expressing clonal human NSC line, HB1.F3.CD, to home to gliomas in mice and locally convert the tumor-localized prodrug 5-fluorocytosine to the active chemotherapeutic 5-fluorouracil. In vitro studies confirmed that the NSCs have normal karyotype, tumor tropism, and CD expression, indicating that these cells are genetically and functionally stable. In vivo biodistribution studies demonstrated that these NSCs retained tumor tropism, even in mice pre-treated with radiation or dexamethasone to mimic clinically relevant adjuvant therapies. We evaluated safety and toxicity after intracerebral administration of the NSCs in non-tumor bearing, and in orthotopic glioma-bearing, immunocompetent and immunodeficient mice. We detected no difference in toxicity associated with conversion of 5-fluorocytosine to 5-fluorouracil, no NSCs outside the brain, and no histological evidence of pathology or tumorigenesis attributable to the NSCs. The average tumor volume in mice that received HB1.F3.CD NSCs and 5-fluorocytosine was approximately one-third that of the average volume in control mice. On the basis of these results, we conclude that combination therapy with HB1.F3.CD NSCs and 5-fluorocytosine is safe, non-toxic and effective in mice. These data have led to approval of a first-inhuman study of an allogeneic NSC-mediated enzyme/prodrug targeted cancer therapy in patients with recurrent high-grade glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.