A highly potent and selective DGAT-1 inhibitor was identified and used in rodent models of obesity and postprandial chylomicron excursion to validate DGAT-1 inhibition as a novel approach for the treatment of metabolic diseases. Specifically, compound 4a conferred weight loss and a reduction in liver triglycerides when dosed chronically in DIO mice and depleted serum triglycerides following a lipid challenge in a dose-dependent manner, thus, reproducing major phenotypical characteristics of DGAT-1(-/-) mice.
Ghrelin, a gut-derived orexigenic hormone, is an endogenous ligand of the growth hormone secretagogue receptor (GHS-R). Centrally administered ghrelin has been shown to cause hunger and increase food intake in rodents. Inhibition of ghrelin actions with ghrelin antibody, peptidyl GHS-R antagonists, and antisense oligonucleosides resulted in weight loss and food intake decrease in rodents. Here we report the effects of GHS-R antagonists, some of which were potent, selective, and orally bioavailable. A structure-activity relationship study led to the discovery of 8a, which was effective in decreasing food intake and body weight in several acute rat studies.
Histamine is a key neurotransmitter that alters central nervous system functions in both behavioural and homeostatic contexts through its actions on the histamine (H) subreceptors H(1), H(2) and H(3) G-protein-coupled receptors. H(3)receptors have a diverse central nervous system distribution where they function as both homo- and hetero-receptors to modulate the synthesis and/or release of several neurotransmitters. H(3) receptors are constitutively active, which implies that antagonists of H(3) receptors may also function as inverse agonists to alter the basal state of the receptor and uncouple constitutive receptor-G-protein interactions. Reference H(3) antagonists such as thioperamide and ciproxifan, administered either centrally or systemically, have been shown to cause changes in food consumption and/or body weight in proof-of-concept studies. More recently, several non-imidazole-based H(3) antagonists/inverse agonists have also been described with efficacy in at least one animal model of human obesity. Considerable preclinical effort remains necessary before such compounds achieve therapeutic success or failure. Moreover, ongoing research in a number of laboratories has shed new insights into the effects of H(3) ligands in the control of feeding, appetite and body weight, which offer different results and conclusions. The goal of this review is to appraise these findings and forecast whether any H(3) antagonists/inverse agonists will provide clinical utility to treat human obesity.
Optimization of a high-throughput screening hit against melanin-concentrating hormone receptor 1 (MCHr1) led to the discovery of 2-(4-benzyloxy-phenyl)-N-[1-(2-pyrrolidin-1-yl-ethyl)-1H-indazol-6-yl]acetamide (7a). This compound was found to be a high-affinity ligand for MCHr1 and a potent inhibitor of MCH-mediated Ca(2+) release, showed good plasma and CNS exposure upon oral dosing in diet-induced obese mice, and is the first reported MCHr1 antagonist that is efficacious upon oral dosing in a chronic model of weight loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.