Sulfonation is an important reaction in the metabolism of numerous xenobiotics, drugs, and endogenous compounds. A supergene family of enzymes called sulfotransferases (SULTs) catalyze this reaction. In most cases, the addition of a sulfonate moiety to a compound increases its water solubility and decreases its biological activity. However, many of these enzymes are also capable of bioactivating procarcinogens to reactive electrophiles. In humans three SULT families, SULT1, SULT2, and SULT4, have been identified that contain at least thirteen distinct members. SULTs have a wide tissue distribution and act as a major detoxification enzyme system in adult and the developing human fetus. Nine crystal structures of human cytosolic SULTs have now been determined, and together with site-directed mutagenesis experiments and molecular modeling, we are now beginning to understand the factors that govern distinct but overlapping substrate specificities. These studies have also provided insight into the enzyme kinetics and inhibition characteristics of these enzymes. The regulation of human SULTs remains as one of the least explored areas of research in the field, though there have been some recent advances on the molecular transcription mechanism controlling the individual SULT promoters. Interindividual variation in sulfonation capacity may be important in determining an individual's response to xenobiotics, and recent studies have begun to suggest roles for SULT polymorphism in disease susceptibility. This review aims to provide a summary of our present understanding of the function of human cytosolic sulfotransferases.
A prevalence study of Parkinson’s disease (PD) was conducted in the rural town of Nambour, Australia. There were 5 cases of PD in a study population of 1207, yielding a crude prevalence ratio of 414 per 100,000 (95% confidence interval; 53–775). We performed a separate case-control study involving 224 patients with PD and 310 controls from South East Queensland and Central West New South Wales, to determine which factors increase the risk for PD in Australia. A positive family history of PD was the strongest risk factor for the development of the disease (odds ratio = 3.4; p < 0.001). In addition, rural residency was a significant risk factor for PD (odds ratio = 1.8, p < 0.001). Hypertension, stroke and well water ingestion were inversely correlated with the development of PD. There was no significant difference between patients and controls for exposure to herbicides and pesticides, head injury, smoking or depression. The high prevalence of PD in Nambour may be explained by rural residency. However, the most significant risk factor for PD was a positive family hisotry. This demonstrates the need for improved understanding of the genetic nature of the disease.
Aging in humans is associated with marked declines in the disposition of numerous drugs and other xenobiotics that require hepatic biotransformation before elimination. Considerable pharmacokinetic evidence in humans, coupled with data on in vitro liver microsomal monooxygenase functions generated in inbred male rodent models, has implicated impaired liver phase I drug metabolism (i.e., diminished efficacy of microsomal monooxygenases) in reduced drug clearance in the elderly. This study (1) assessed the in vitro activities and amounts of liver microsomal monooxygenases as a function of donor age and gender in healthy humans and (2) provides the most extensive and comprehensive data to date demonstrating the absence of significant age- and gender-dependent differences in the activities and contents of human liver monooxygenases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.