In the mouse, at least 16 genes regulate vesicle trafficking to specialized lysosome-related organelles, including platelet dense granules and melanosomes. Fourteen of these genes have been identified by positional cloning. All 16 mouse mutants are models for the genetically heterogeneous human disease, Hermansky-Pudlak Syndrome (HPS). Five HPS genes encode known vesicle trafficking proteins. Nine genes are novel, are found only in higher eukaryotes and encode members of three protein complexes termed BLOCs (Biogenesis of Lysosome-related Organelles Complexes). Mutations in murine HPS genes, which encode protein co-members of BLOCs, produce essentially identical phenotypes. In addition to their well-known effects on pigmentation, platelet function and lysosome secretion, HPS genes control a wide range of physiological processes including immune recognition, neuronal functions and lung surfactant trafficking. Studies of the molecular functions of HPS proteins will reveal important details of vesicle trafficking and may lead to therapies for HPS.
Hermansky Pudlak Syndrome (HPS) is a recessively inherited disease affecting the contents and/or the secretion of several related subcellular organelles including melanosomes, lysosomes, and platelet dense granules. It presents with disorders of pigmentation, prolonged bleeding, and ceroid deposition, often accompanied by severe fibrotic lung disease and colitis. In the mouse, the disorder is clearly multigenic, caused by at least 14 distinct mutations. Studies on the mouse mutants have defined the granule abnormalities of HPS and have shown that the disease is associated with a surprising variety of phenotypes affecting many tissues. This is an exciting time in HPS research because of the recent molecular identification of the gene causing a major form of human HPS and the expected identifications of several mouse HPS genes. Identifications of mouse HPS genes are expected to increase our understanding of intracellular vesicle trafficking, lead to discovery of new human HPS genes, and suggest diagnostic and therapeutic approaches toward the more severe clinical consequences of the disease.
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous disease involving abnormalities of melanosomes, platelet dense granules and lysosomes. Here we have used positional candidate and transgenic rescue approaches to identify the genes mutated in ruby-eye 2 and ruby-eye mice (ru2 and ru, respectively), two 'mimic' mouse models of HPS. We also show that these genes are orthologs of the genes mutated in individuals with HPS types 5 and 6, respectively, and that their protein products directly interact. Both genes are previously unknown and are found only in higher eukaryotes, and together represent a new class of genes that have evolved in higher organisms to govern the synthesis of highly specialized lysosome-related organelles.
Lysosomes, melanosomes and platelet-dense granules are abnormal in the mouse hypopigmentation mutant pearl. The beta3A subunit of the AP-3 adaptor complex, which likely regulates protein trafficking in the trans - Golgi network/endosomal compartments, was identified as a candidate for the pearl gene by a positional/candidate cloning approach. Mutations, including a large internal tandem duplication and a deletion, were identified in two respective pearl alleles and are predicted to abrogate function of the beta3A protein. Significantly lowered expression of altered beta3A transcripts occurred in kidney of both mutant alleles. The several distinct pearl phenotypes suggest novel functions for the AP-3 complex in mammals. These experiments also suggest mutations in AP-3 subunits as a basis for unique forms of human Hermansky-Pudlak syndrome and congenital night blindness, for which the pearl mouse is an appropriate animal model.
Mini-chromosome maintenance proteins (Mcm’s) are components of the DNA replication licensing complex. In vivo, reduced expression or activity of Mcm proteins has been shown to result in highly penetrant early onset cancers (Shima et al., 2007; Pruitt et al., 2007 and stem cell deficiencies (Pruitt et al., 2007). Here we use MEFs from an Mcm2 deficient strain of mice to show by DNA fiber analysis that origin usage is decreased in Mcm2 deficient cells under conditions of HU mediated replication stress. DNA damage responses (DDR) resulting from HU and additional replication dependent and independent genotoxic agents were also examined and shown to function at wild type levels. Further, basal levels of many components of the DNA damage response were expressed at wild type levels demonstrating that there is no acute replicative stress under normal growth conditions. Only very modest, 1.5–2 fold increases in the basal levels of γ-H2AX, p21cip1 and 53bp foci were found, consistent with a slight chronic elevation in DDR pathways. The one condition in which a larger difference between wt and Mcm2 deficient cells was found occurred following UV irradiation and may reflect the role of Chk1 mediated suppression of dormant origins. In vivo, abrogating p53 mediated DDR in Mcm2 deficient mice results in increased embryonic lethality and accelerated cancer formation in surviving mice. Further, p53 mutation rescues the negative effect of Mcm2 deficiency on the survival of neural stem cells in vitro; however, the enhanced survival correlates with increased genetic damage relative to Mcm2 wt cells carrying the p53 mutation. Together these results demonstrate that even relatively minor perturbations to primary or dormant replication origin usage contribute to accelerated genetic damage in vivo. Additionally, these studies demonstrate that tumor types resulting from Mcm2 deficiency are strongly affected by interaction with both genetic background and p53.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.