SmB6 is a proposed topological Kondo insulator where the presence of topological nontriviality can be tuned by variations in the Sm valence. Experimentally, Sm valence can be changed by tuning stoichiometry of SmB6. We show that Raman scattering can detect vacancies down to 1% of Sm sites in SmB6 crystal by probing the intensity of defect-induced scattering of the acoustic phonon branch at 10 meV. In the electronic Raman spectra of SmB6 at temperatures below 130 K, we observe features developing in A1g and Eg symmetries at 100 and 41 meV which we assign to excitations between hybridized bands, and depressed spectral weight below 20 meV associated with the hybridization gap. With the increased number of Sm vacancies up to 1% we observe an increase of spectral weight below 20 meV showing that the gap is filling in with electronic states. For the sample with the lowest number of vacancies the in-gap exciton excitations with long lifetimes protected by hybridization gap are observed at 16-18 meV in Eg and T2g symmetries. These excitations broaden as a decrease in the lifetime with increasing number of vacancies and are quenched by the presence of in-gap states at concentration of Sm vacancies of about 1%. Based on this study we suggest that only the most stoichiometric SmB6 samples have a bulk gap necessary for topological Kondo insulators.
This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.
Using Raman spectroscopy, we investigate the lattice phonons, magnetic excitations, and magnetoelastic coupling in the distorted triangular-lattice Heisenberg antiferromagnet α-SrCr2O4, which develops helical magnetic order below 43 K. Temperature dependent phonon spectra are compared to predictions from density functional theory calculations which allows us to assign the observed modes and identify weak effects arising from coupled lattice and magnetic degrees of freedom. Raman scattering associated with two-magnon excitations is observed at 20 meV and 40 meV. These energies are in general agreement with our ab-initio calculations of exchange interactions and earlier theoretical predictions of the two-magnon Raman response of triangular-lattice antiferromagnets. The temperature dependence of the two-magnon excitations indicates that spin correlations persist well above the Néel temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.