Various techniques for implementing normal and/or tangential boundary conditions in finite element codes are reviewed. The principle of global conservation of mass is used to define a unique direction for the outward pointing normal vector at any node on an irregular boundary of a domain containing an incompressible fluid. This information permits the consistent and unambiguous application of essential or natural boundary conditions (or any combination thereof) on the domain boundary regardless of boundary shape or orientation with respect to the co-ordinate directions in both two and three dimensions. Several numerical examples are presented which demonstrate the effectiveness of the recommended technique.
SUMMARYThe spurious pressures and ostensibly acceptable velocities which sometimes result from certain FEM approximate solutions of the incompressible Navier-Stokes equations are explained in detail. The concept of pressure modes, physical and spurious, pure and impure, is introduced and their effects on discretized solutions is analysed, in the context of both mixed interpolation and penalty approaches. Pressure filtering schemes, which are capable of recovering useful pressures from otherwise polluted numerical results, are developed for two particular elements in two-dimensions and one element in three-dimensions. The automatic pressure filter associated with the penalty method is also explained. Implications regarding the effect of spurious pressure modes on accuracy and ultimate convergence with mesh refinement are discussed and a list of unanswered questions presented. Sufficient numerical examples are discussed to corroborate the theory presented herein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.