SummaryAlthough successful and persistent colonization of the gastric mucosa depends on the ability to respond to changing environmental conditions and co-ordinate the expression of virulence factors during the course of infection, Helicobacter pylori possesses relatively few transcriptional regulators. We therefore investigated the contribution of the regulatory protein CsrA to global gene regulation in this important human pathogen. CsrA was necessary for full motility and survival of H. pylori under conditions of oxidative stress. Loss of csrA expression deregulated the oxidant-induced transcriptional responses of napA and ahpC , the acid induction of napA , cagA , vacA , the urease operon, and fur , as well as the heat shock responses of napA , groESL and hspR . Although the level of napA transcript was higher in the csrA mutant, its stability was similar in the wild-type and mutant strains, and less NapA protein was produced in the mutant strain. Finally, H. pylori strains deficient in the production of CsrA were significantly attenuated for virulence in a mouse model of infection. This work provides evidence that CsrA has a broad role in regulating the physiology of H. pylori in response to environmental stimuli, and may be important in facilitating adaptation to the different environments encountered during colonization of the gastric mucosa. Furthermore, CsrA appears to mediate its effects in H. pylori at the post-transcriptional level by influencing the processing and translation of target transcripts, with minimal effect on the stability of the target mRNAs.
Our objective was to determine whether strains of Pseudomonas aeruginosa can adapt to growth in increasing concentrations of the disinfectant benzalkonium chloride (BKC), and whether co-resistance to clinically relevant antimicrobial agents occurs. Attempts were made to determine what phenotypic alterations accompanied resistance and whether these explained the mechanism of resistance. Strains were serially passaged in increasing concentrations of BKC in static nutrient broth cultures. Serotyping and genotyping were used to determine purity of the cultures. Two strains were examined for cross-resistance to other disinfectants and antibiotics by broth dilution MIC determination. Alterations in outer membrane proteins and lipopolysaccharide (LPS) expressed were examined by SDS-PAGE. Cell surface hydrophobicity and charge, uptake of disinfectant and proportion of specific fatty acid content of outer and cytoplasmic membranes were determined. Two P. aeruginosa strains showed a stable increase in resistance to BKC. Co-resistance to other quaternary ammonium compounds was observed in both strains; chloramphenicol and polymyxin B resistance were observed in one and a reduction in resistance to tobramycin observed in the other. However, no increased resistance to other biocides (chlorhexidine, triclosan, thymol) or antibiotics (ceftazidime, imipenem, ciprofloxacin, tobramycin) was detected. Characteristics accompanying resistance included alterations in outer membrane proteins, uptake of BKC, cell surface charge and hydrophobicity, and fatty acid content of the cytoplasmic membrane, although no evidence was found for alterations in LPS. Each of the two strains had different alterations in phenotype, indicating that such adaptation is unique to each strain of P. aeruginosa and does not result from a single mechanism shared by the whole species.
Homologous recombination contributes to the extraordinary genetic diversity of Helicobacter pylori and may be critical for surface antigen expression and adaptation to environmental challenges within the stomach. We generated isogenic, nonpolar H. pylori ruvC mutants to investigate the function of RuvC, a Holliday junction endonuclease that resolves recombinant joints into nicked duplex products. Inactivation of ruvC reduced the frequency of homologous recombination of H. pylori between 17-and 45-fold and increased sensitivity to DNAdamaging agents and the antimicrobial agents levofloxacin and metronidazole. The H. pylori ruvC mutants were more susceptible to oxidative stress and exhibited reduced survival within macrophages. Experiments with the H. pylori SS1 mouse model revealed that the 50% infective dose of the ruvC mutant was approximately 100-fold higher than that of the wild-type SS1 strain. Although the ruvC mutant was able to establish colonization with bacterial loads that were initially similar to those of the parental SS1 strain, infection was spontaneously cleared from the murine gastric mucosa over periods that varied from 36 to 67 days. These results demonstrate that, in this infection model, RuvC is essential for continued survival of H. pylori in vivo and raises the possibility that inactivation of ruvC might be of value in an attenuated vaccine strain.
Rearrangement of genomic DNA via homologous recombination provides an alternative mechanism of gene regulation that is essential for successful colonization of the gastric mucosa by Helicobacter pylori. Inoculation of outbred mice with the H. pylori SS1 wild-type strain elicited a T helper (Th) 2 response and established a persistent infection. In contrast, inoculation with an isogenic H. pylori strain defective for homologous recombination elicited a Th1-mediated immune response and clearance of infection within 70 days. We, therefore, demonstrate that recombination is critical for mediating persistence of a microbial pathogen through the induction of ineffective immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.