A member of the glutathione S-transferase family, Sm28GST has previously demonstrated a good ability to protect rodents against experimental infection with Schistosoma mansoni. In order to evaluate its efficacy in a model closer to man, two different protocols of immunization with recombinant Sm28GST were tested on baboons in a large-scale trial. Three injections in the presence of aluminium hydroxide as adjuvant resulted in a significant 38% reduction in the adult worm burden together with a trend for a lower percentage of inflammatory tissue in the liver. Individual levels of protection, ranging from 0 to 80%, underlined the heterogeneity of the immune response to this purified molecule in outbred primates. On the other hand, two injections of Sm28GST in the presence of aluminium hydroxide and Bordetella pertussis reduced female schistosome fecundity by 33%, with a more pronounced effect (66%) on faecal egg output; there was also a trend, in this protocol, for decrease of the mean granuloma surface in the liver. Individual anti-Sm28GST IgG antibodies were apparently unrelated to levels of immunity, but there was partial evidence that cytophilic IgE might play a role in the immune mechanisms affecting worm viability, but not fecundity. In the mouse model, Sm28GST vaccination resulted in a lower hatching ability of tissue eggs recovered from immunized mice whereas passive transfer of specific anti-Sm28GST T-lymphocytes, one day before infection, significantly reduced the number of eggs in the liver of mice. We propose that different protocols of immunization with a recombinant molecule can impede Schistosoma mansoni worm viability and fecundity, but can also affect miracidium physiology, with important consequences for disease transmission and granuloma-derived pathology.
Statistical power to detect disease variants can be increased by weighting candidates by their evidence of natural selection. To demonstrate that this theoretical idea works in practice, we performed an association study of 10 putative resistance variants in 471 severe malaria cases and 474 controls from the Luo in Kenya. We replicated associations at HBB (P=.0008) and CD36 (P=.03) but also showed that the same variants are unusually differentiated in frequency between the Luo and Yoruba (who historically have been exposed to malaria) and the Masai and Kikuyu (who have not been exposed). This empirically demonstrates that combining association analysis with evidence of natural selection can increase power to detect risk variants by orders of magnitude--up to P=.000018 for HBB and P=.00043 for CD36.
Protective immunity against Plasmodium falciparum is partially mediated through binding of malaria-specific IgG antibodies to Fcgamma receptors. Polymorphic variability in Fcgamma RIIa (H/R-131) is associated with differential binding of IgG subtypes and malaria disease outcomes. However, the role of Fcgamma RIIa-131 variability in conditioning susceptibility to severe malarial anemia, the primary manifestation of severe malaria in holoendemic P. falciparum transmission areas, is largely undefined. Thus, Fcgamma RIIa-H131R polymorphism was investigated in 493 children who came to a hospital with acute malaria. Variation in Fcgamma RIIa-131 was not significantly associated with severe malarial anemia (hemoglobin [Hb] < 6.0 g/dL) or malaria anemia (Hb < 8.0 g/dL). However, relative to the heterozygous genotype, homozygotes for the R131 alleles were protected against high-density parasitemia (>or= 10,000 parasites/microL; odds ratio [OR] = 0.58, 95% confidence interval [CI] = 0.37-0.92, P = 0.02), while homozygotes for the H131 alleles were mildly protective (OR = 0.71, 95% CI = 0.45-1.13, P = 0.14). Additional multivariate analyses showed that infection with human immunodeficiency virus type 1 did not influence the associations between FcgammaRIIa-H131R polymorphism and malaria disease outcomes. Genotypic results presented here parallel data illustrating that parasite density is unrelated to the severity of anemia in children with acute malaria. Thus, although homozygosity for the R131 allele protects against high-density parasitemia, FcgammaRIIa-131 polymorphism does not protect against malaria anemia.
Interleukin (IL)-1β is a cytokine released as part of innate immune response to Plasmodium falciparum. Since the role of IL-1β polymorphic variability in conditioning the immunopathogenesis of severe malarial anemia (SMA) remains undefined, relationships between IL-1β promoter variants (-31C/T and -511A/G), SMA (Hb<6.0 g/dL), and circulating IL-1β levels were investigated in parasitemic children (n=566) from western Kenya. IL-1β promoter haplotype -31C/-511A (CA) was associated with increased risk of SMA (Hb<6.0 g/dL; OR; 1.98, 95% CI, 1.55-2.27; P<0.05) and reduced circulating IL-1β levels (P<0.05). The TA (-31T/-511A) haplotype was non-significantly associated with protection against SMA (OR; 0.52, 95% CI, 0.18-1.16; P=0.11) and elevated IL-1β production (P<0.05). Children with SMA had significantly lower IL-1β levels and non-significant elevations in both IL-1 receptor antagonist (Ra) and the IL-1Ra:IL-1β ratio compared to the non-SMA group. Results presented demonstrate that variation in IL-1β promoter conditions susceptibility to SMA and functional changes in circulating IL-1β levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.