Three new cyclic heptapeptide hepatotoxins, [D-Ser1,ADMAdda5]microcystin-LR (1), [D-Asp3,-ADMAdda5]microcystin-LHar (2), and [ADMAdda5,Mser7]microcystin-LR (3), were isolated from the cyanobacterium (blue-green alga) Nostoc sp. strain 152, together with four known microcystins, [ADMAdda5]microcystin-LR (4), [ADMAdda5]microcystin-LHar (5), [D-Asp3,-ADMAdda5]microcystin-LR (6), and [DMAdda5]microcystin-LR (7). The structures of new microcystins were assigned on the basis of high-resolution fast atom bombardment mass spectrometry (HR FABMS), collisionally induced tandem FABMS (FABMS/MS), amino acid analysis, and gas chromatography (GC) on a chiral capillary column. All three new toxins contained 9-acetoxy-3-amino-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (ADMAdda) instead of the corresponding 9-methoxyl derivative (Adda), while 7 contains the corresponding 9-hydroxy analog (DMAdda). Compound 1 is the first microcystin reported that contains D-serine (D-Ser) in lieu of the D-alanine (D-Ala) unit which was thought to be an invariable amino acid component of the microcystins. Compound 2 has L-homoarginine (Har) instead of L-arginine (L-Arg) in 6 and D-aspartic acid (D-Asp) instead of D-erythro-beta-methylaspartic acid (D-MeAsp) in 5. Compound 3, the N-methylserine (Mser) variant of the N-methyldehydroalanine unit in 4, would be a biosynthetic precursor of 4.
Microcystins (cyclic heptapeptide hepatotoxins), isolated from 13 freshwater Oscillatoria agardhii strains from eight different Finnish lakes by high-performance liquid chromatography, were characterized by amino acid analysis, fast atom bombardment mass spectrometry (FABMS), and tandem FABMS (FABMS/collisionaryinduced dissociation/MS). All strains produced two to five different microcystins. In total, eight different compounds, of which five were known microcystins, were isolated. The known compounds identified were [D-Asp3]MCYST (microcystin)-LR, [Dha71MCYST-LR, [D-Asp3]MCYST-RR, [Dha7]MCYST-RR, and [D-Asp3,Dha71MCYST-RR. This is the first time that isolation of these toxins from Oscillatoria spp., with the exception of [D-Asp3jMCYST-RR, has been reported. Three of the strains produced a new microcystin, and the structure was assigned as [D-Asp3,Mser7JMCYST-RR. The structures of two new microcystins, produced as minor components by one Oscilatoria strain, could not be determined because of the small amounts isolated from the cells. Four strains produced [Dha71MCYST-RR as the main toxin, but [D-Asp3jMCYST-RR was
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.