Background Early recognition of high-risk-patients with acute respiratory distress syndrome (ARDS) might improve their outcome by less protracted allocation to intensified therapy including extracorporeal membrane oxygenation (ECMO). Among numerous predictors and classifications, the American European Consensus Conferenece (AECC)-and Berlin-definitions as well as the oxygenation index (OI) and the Murray-/Lung Injury Score are the most common. Most studies compared the prediction of mortality by these parameters on the day of intubation and/or diagnosis of ARDS. However, only few studies investigated prediction over time, in particular for more than three days. Objective Therefore, our study aimed at characterization of the best predictor and the best day(s) to predict 28-days-mortality within four days after intubation of patients with ARDS. Methods In 100 consecutive patients with ARDS severity according to OI (mean airway pressure*-F i O 2 /p a O 2), modified Murray-score without radiological points (Murray_mod), AECC-and Berlin-definition, were daily documented for four days after intubation. In the subgroup of 49 patients with transpulmonary thermodilution (TPTD) monitoring (PiCCO), extravascular lung water index (EVLWI) was measured daily.
Background Severe COVID-19 induced acute respiratory distress syndrome (ARDS) often requires extracorporeal membrane oxygenation (ECMO). Recent German health insurance data revealed low ICU survival rates. Patient characteristics and experience of the ECMO center may determine intensive care unit (ICU) survival. The current study aimed to identify factors affecting ICU survival of COVID-19 ECMO patients. Methods 673 COVID-19 ARDS ECMO patients treated in 26 centers between January 1st 2020 and March 22nd 2021 were included. Data on clinical characteristics, adjunct therapies, complications, and outcome were documented. Block wise logistic regression analysis was applied to identify variables associated with ICU-survival. Results Most patients were between 50 and 70 years of age. PaO2/FiO2 ratio prior to ECMO was 72 mmHg (IQR: 58–99). ICU survival was 31.4%. Survival was significantly lower during the 2nd wave of the COVID-19 pandemic. A subgroup of 284 (42%) patients fulfilling modified EOLIA criteria had a higher survival (38%) (p = 0.0014, OR 0.64 (CI 0.41–0.99)). Survival differed between low, intermediate, and high-volume centers with 20%, 30%, and 38%, respectively (p = 0.0024). Treatment in high volume centers resulted in an odds ratio of 0.55 (CI 0.28–1.02) compared to low volume centers. Additional factors associated with survival were younger age, shorter time between intubation and ECMO initiation, BMI > 35 (compared to < 25), absence of renal replacement therapy or major bleeding/thromboembolic events. Conclusions Structural and patient-related factors, including age, comorbidities and ECMO case volume, determined the survival of COVID-19 ECMO. These factors combined with a more liberal ECMO indication during the 2nd wave may explain the reasonably overall low survival rate. Careful selection of patients and treatment in high volume ECMO centers was associated with higher odds of ICU survival. Trial registration Registered in the German Clinical Trials Register (study ID: DRKS00022964, retrospectively registered, September 7th 2020, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00022964. Graphical abstract
The aim of the current paper is to summarize the results of the International CytoSorb Registry. Data were collected on patients of the intensive care unit. The primary endpoint was actual in-hospital mortality compared to the mortality predicted by APACHE II score. The main secondary endpoints were SOFA scores, inflammatory biomarkers and overall evaluation of the general condition. 1434 patients were enrolled. Indications for hemoadsorption were sepsis/septic shock (N = 936); cardiac surgery perioperatively (N = 172); cardiac surgery postoperatively (N = 67) and “other” reasons (N = 259). APACHE-II-predicted mortality was 62.0±24.8%, whereas observed hospital mortality was 50.1%. Overall SOFA scores did not change but cardiovascular and pulmonary SOFA scores decreased by 0.4 [-0.5;-0.3] and -0.2 [-0.3;-0.2] points, respectively. Serum procalcitonin and C-reactive protein levels showed significant reduction: -15.4 [-19.6;-11.17] ng/mL; -17,52 [-70;44] mg/L, respectively. In the septic cohort PCT and IL-6 also showed significant reduction: -18.2 [-23.6;-12.8] ng/mL; -2.6 [-3.0;-2.2] pg/mL, respectively. Evaluation of the overall effect: minimal improvement (22%), much improvement (22%) and very much improvement (10%), no change observed (30%) and deterioration (4%). There was no significant difference in the primary outcome of mortality, but there were improvements in cardiovascular and pulmonary SOFA scores and a reduction in PCT, CRP and IL-6 levels. Trial registration: ClinicalTrials.gov Identifier: NCT02312024 (retrospectively registered).
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.