the use of game design elements in nongame contexts, is increasingly being used in workplace wellness programs and digital health applications. However, the best way to design social incentives in gamification interventions has not been well examined. OBJECTIVE To assess the effectiveness of support, collaboration, and competition within a behaviorally designed gamification intervention to increase physical activity among overweight and obese adults. DESIGN, SETTING, AND PARTICIPANTS This 36-week randomized clinical trial with a 24-week intervention and 12-week follow-up assessed 602 adults from 40 states with body mass indexes (calculated as weight in kilograms divided by height in meters squared) of 25 or higher from February 12, 2018, to March 17, 2019. INTERVENTIONS Participants used a wearable device to track daily steps, established a baseline, selected a step goal increase, were randomly assigned to a control (n = 151) or to 1 of 3 gamification interventions (support [n = 151], collaboration [n = 150], and competition [n = 150]), and were remotely monitored. The control group received feedback from the wearable device but no other interventions for 36 weeks. The gamification arms were entered into a 24-week game designed using insights from behavioral economics with points and levels for achieving step goals. No gamification interventions occurred during follow-up. MAIN OUTCOMES AND MEASURES The primary outcome was change in mean daily steps from baseline through the 24-week intervention period. RESULTS A total of 602 participants (mean [SD] age, 39 [10] years; mean [SD] body mass index, 30 [5]; 427 [70.9%] male) were included in the study. Compared with controls, participants had a significantly greater increase in mean daily steps from baseline during the intervention in the competition arm (adjusted difference, 920; 95% CI, 513-1328; P < .001), support arm (adjusted difference, 689; 95% CI, 267-977; P < .001), and collaboration arm (adjusted difference, 637; 95% CI, 258-1017; P = .001). During follow-up, physical activity remained significantly greater in the competition arm than in the control arm (adjusted difference, 569; 95% CI, 142-996; P = .009) but was not significantly greater in the support (adjusted difference, 428; 95% CI, 19-837; P = .04) and collaboration (adjusted difference, 126; 95% CI, −248 to 468; P = .49) arms than in the control arm. CONCLUSIONS AND RELEVANCE All 3 gamification interventions significantly increased physical activity during the 24-week intervention, and competition was the most effective. Physical activity was lower in all arms during follow-up and only remained significantly greater in the competition arm than in the control arm. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03311230
IMPORTANCE Gamification is increasingly being used to promote healthy behaviors. However, it has not been well tested among patients with chronic conditions and over longer durations.OBJECTIVE To test the effectiveness of behaviorally designed gamification interventions to enhance support, collaboration, or competition to promote physical activity and weight loss among adults with uncontrolled type 2 diabetes.
Value-based decision making relies on distributed neural systems that weigh the benefits of actions against the cost required to obtain a given outcome. Perturbations of these systems are thought to underlie abnormalities in action selection seen across many neuropsychiatric disorders. Genetic tools in mice provide a promising opportunity to explore the cellular components of these systems and their molecular foundations. However, few tasks have been designed that robustly characterize how individual mice integrate differential reward benefits and cost in their selection of actions. Here we present a forced-choice, two-alternative task in which each option is associated with a specific reward outcome, and unique operant contingency. We employed global and individual trial measures to assess the choice patterns and behavioral flexibility of mice in response to differing "choice benefits" (modeled as varying reward magnitude ratios) and different modalities of "choice cost" (modeled as either increasing repetitive motor output to obtain reward or increased delay to reward delivery). We demonstrate that (1) mouse choice is highly sensitive to the relative benefit of outcomes; (2) choice costs are heavily discounted in environments with large discrepancies in relative reward; (3) divergent cost modalities are differentially integrated into action selection; (4) individual mouse sensitivity to reward benefit is correlated with sensitivity to reward costs. These paradigms reveal stable individual animal differences in value-based action selection, thereby providing a foundation for interrogating the neural circuit and molecular pathophysiology of goal-directed dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.