Appearance reproduction is an important aspect of 3D printing. Current color reproduction systems use halftoning methods that create colors through a spatial combination of different inks at the object's surface. This introduces a variety of artifacts to the object, especially when viewed from a closer distance. In this work, we propose an alternative color reproduction method for 3D printing. Inspired by the inherent ability of 3D printers to layer different materials on top of each other, 3D color contoning creates colors by combining inks with various thicknesses inside the object's volume. Since inks are inside the volume, our technique results in a uniform color surface with virtually invisible spatial patterns on the surface. For color prediction, we introduce a simple and highly accurate spectral model that relies on a weighted regression of spectral absorptions. We fully characterize the proposed framework by addressing a number of problems, such as material arrangement, calculation of ink concentration, and 3D dot gain. We use a custom 3D printer to fabricate and validate our results.
We propose a workflow for spectral reproduction of paintings, which captures a painting's spectral color, invariant to illumination, and reproduces it using multi-material 3D printing. We take advantage of the current 3D printers' capabilities of combining highly concentrated inks with a large number of layers, to expand the spectral gamut of a set of inks. We use a data-driven method to both predict the spectrum of a printed ink stack and optimize for the stack layout that best matches a target spectrum. This bidirectional mapping is modeled using a pair of neural networks, which are optimized through a problem-specific multi-objective loss function. Our loss function helps find the best possible ink layout resulting in the balance between spectral reproduction and colorimetric accuracy under a multitude of illuminants. In addition, we introduce a novel spectral vector error diffusion algorithm based on combining color contoning and halftoning, which simultaneously solves the layout discretization and color quantization problems, accurately and efficiently. Our workflow outperforms the state-of-the-art models for spectral prediction and layout optimization. We demonstrate reproduction of a number of real paintings and historically important pigments using our prototype implementation that uses 10 custom inks with varying spectra and a resin-based 3D printer.
Additive manufacturing has become one of the forefront technologies in fabrication, enabling products impossible to manufacture before. Although many materials exist for additive manufacturing, most suffer from performance trade-offs. Current materials are designed with inefficient human-driven intuition-based methods, leaving them short of optimal solutions. We propose a machine learning approach to accelerating the discovery of additive manufacturing materials with optimal trade-offs in mechanical performance. A multiobjective optimization algorithm automatically guides the experimental design by proposing how to mix primary formulations to create better performing materials. The algorithm is coupled with a semiautonomous fabrication platform to substantially reduce the number of performed experiments and overall time to solution. Without prior knowledge of the primary formulations, the proposed methodology autonomously uncovers 12 optimal formulations and enlarges the discovered performance space 288 times after only 30 experimental iterations. This methodology could be easily generalized to other material design systems and enable automated discovery.
Polymers are widely studied materials with diverse properties and applications determined by molecular structures. It is essential to represent these structures clearly and explore the full space of achievable chemical designs. However, existing approaches cannot offer comprehensive design models for polymers because of their inherent scale and structural complexity. Here, a parametric, context-sensitive grammar designed specifically for polymers (PolyGrammar) is proposed. Using the symbolic hypergraph representation and 14 simple production rules, PolyGrammar can represent and generate all valid polyurethane structures. An algorithm is presented to translate any polyurethane structure from the popular Simplified Molecular-Input Line-entry System (SMILES) string format into the PolyGrammar representation. The representative power of PolyGrammar is tested by translating a dataset of over 600 polyurethane samples collected from the literature. Furthermore, it is shown that PolyGrammar can be easily extended to other copolymers and homopolymers. By offering a complete, explicit representation scheme and an explainable generative model with validity guarantees, PolyGrammar takes an essential step toward a more comprehensive and practical system for polymer discovery and exploration.As the first bridge between formal languages and chemistry, PolyGrammar also serves as a critical blueprint to inform the design of similar grammars for other chemistries, including organic and inorganic molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.