RNA-Seq is increasingly being used to measure human RNA expression on a genome-wide scale. Expression profiles can be interrogated to identify and functionally characterize treatment-responsive genes. Ultimately, such controlled studies promise to reveal insights into molecular mechanisms of treatment effects, identify biomarkers, and realize personalized medicine. RNA-Seq Reports (RSEQREP) is a new open-source cloud-enabled framework that allows users to execute start-to-end gene-level RNA-Seq analysis on a preconfigured RSEQREP Amazon Virtual Machine Image (AMI) hosted by AWS or on their own Ubuntu Linux machine. The framework works with unstranded, stranded, and paired-end sequence FASTQ files stored locally, on Amazon Simple Storage Service (S3), or at the Sequence Read Archive (SRA). RSEQREP automatically executes a series of customizable steps including reference alignment, CRAM compression, reference alignment QC, data normalization, multivariate data visualization, identification of differentially expressed genes, heatmaps, co-expressed gene clusters, enriched pathways, and a series of custom visualizations. The framework outputs a file collection that includes a dynamically generated PDF report using R, knitr, and LaTeX, as well as publication-ready table and figure files. A user-friendly configuration file handles sample metadata entry, processing, analysis, and reporting options. The configuration supports time series RNA-Seq experimental designs with at least one pre-and one post-treatment sample for each subject, as well as multiple treatment groups and specimen types. All RSEQREP analyses components are built using open-source R code and R/Bioconductor packages allowing for further customization. As a use case, we provide RSEQREP results for a trivalent influenza vaccine (TIV) RNA-Seq study that collected 1 pre-TIV and 10 post-TIV vaccination samples (days 1-10) for 5 subjects and two specimen types (peripheral blood mononuclear cells and B-cells).
RNA-Seq is increasingly being used to measure human RNA expression on a genome-wide scale. Expression profiles can be interrogated to identify and functionally characterize treatment-responsive genes. Ultimately, such controlled studies promise to reveal insights into molecular mechanisms of treatment effects, identify biomarkers, and realize personalized medicine. RNA-Seq Reports (RSEQREP) is a new open-source cloud-enabled framework that allows users to execute start-to-end gene-level RNA-Seq analysis on a preconfigured RSEQREP Amazon Virtual Machine Image (AMI) hosted by AWS or on their own Ubuntu Linux machine via a Docker container or installation script. The framework works with unstranded, stranded, and paired-end sequence FASTQ files stored locally, on Amazon Simple Storage Service (S3), or at the Sequence Read Archive (SRA). RSEQREP automatically executes a series of customizable steps including reference alignment, CRAM compression, reference alignment QC, data normalization, multivariate data visualization, identification of differentially expressed genes, heatmaps, co-expressed gene clusters, enriched pathways, and a series of custom visualizations. The framework outputs a file collection that includes a dynamically generated PDF report using R, knitr, and LaTeX, as well as publication-ready table and figure files. A user-friendly configuration file handles sample metadata entry, processing, analysis, and reporting options. The configuration supports time series RNA-Seq experimental designs with at least one pre- and one post-treatment sample for each subject, as well as multiple treatment groups and specimen types. All RSEQREP analyses components are built using open-source R code and R/Bioconductor packages allowing for further customization. As a use case, we provide RSEQREP results for a trivalent influenza vaccine (TIV) RNA-Seq study that collected 1 pre-TIV and 10 post-TIV vaccination samples (days 1-10) for 5 subjects and two specimen types (peripheral blood mononuclear cells and B-cells).
Background The are many benefits of data sharing, including the promotion of new research from effective use of existing data, replication of findings through re-analysis of pooled data files, meta-analysis using individual patient data, and reinforcement of open scientific inquiry. A randomized controlled trial is considered as the “gold standard” for establishing treatment effectiveness, but clinical trial research is very costly and sharing data is an opportunity to expand the investment of the clinical trial beyond its original goals at minimal costs. Purpose We describe the goals, developments, and usage of the Data Share website (www.ctndatashare.org) for the National Drug Abuse Treatment Clinical Trials Network (CTN) in the US, including lessons learned, limitations and major revisions and considerations for future directions to improve data sharing. Methods Data management and programming procedures were conducted to produce uniform and Health Insurance Portability and Accountability Act (HIPAA)-compliant de-identified research data files from the completed trials of the CTN for archiving, managing, and sharing on the Data Share website. Results Since its inception in 2006 and through October 2012, nearly 1700 downloads from 27 clinical trials have been accessed from the Data Share website, with the use increasing over the years. Individuals from 31 countries have downloaded data from the website, and there have been at least 13 publications derived from analyzing data through the public Data Share website. Limitations Minimal control over data requests and usage has resulted in little information and lack of control regarding how the data from the website are used. Lack of uniformity in data elements collected across CTN trials has limited cross-study analyses. Conclusions The Data Share website offers researchers easy access to deidentified data files with the goal to promote additional research and identify new findings from completed CTN studies. To maximize the utility of the website, on-going collaborative efforts are needed to standardize the core measures used for data collection in the CTN studies with the goal to increase their comparability and to facilitate the ability to pool data files for cross-study analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.