This paper explores the power and the limitations of weakly supervised categorization. We present a complete framework that starts with the extraction of various local regions of either discontinuity or homogeneity. A variety of local descriptors can be applied to form a set of feature vectors for each local region. Boosting is used to learn a subset of such feature vectors (weak hypotheses) and to combine them into one final hypothesis for each visual category. This combination of individual extractors and descriptors leads to recognition rates that are superior to other approaches which use only one specific extractor/descriptor setting. To explore the limitation of our system, we had to set up new, highly complex image databases that show the objects of interest at varying scales and poses, in cluttered background, and under considerable occlusion. We obtain classification results up to 81 percent ROC-equal error rate on the most complex of our databases. Our approach outperforms all comparable solutions on common databases.
In this paper we describe the first stage of a new learning system for object detection and recognition. For our system we propose Boosting [5] as the underlying learning technique. This allows the use of very diverse sets of visual features in the learning process within a common framework: Boosting -together with a weak hypotheses findermay choose very inhomogeneous features as most relevant for combination into a final hypothesis. As another advantage the weak hypotheses finder may search the weak hypotheses space without explicit calculation of all available hypotheses, reducing computation time. This contrasts the related work of Agarwal and Roth [1] where Winnow was used as learning algorithm and all weak hypotheses were calculated explicitly. In our first empirical evaluation we use four types of local descriptors: two basic ones consisting of a set of grayvalues and intensity moments and two high level descriptors: moment invariants [8] and SIFTs [12]. The descriptors are calculated from local patches detected by an interest point operator. The weak hypotheses finder selects one of the local patches and one type of local descriptor and efficiently searches for the most discriminative similarity threshold. This differs from other work on Boosting for object recognition where simple rectangular hypotheses [22] or complex classifiers [20] have been used. In relatively simple images, where the objects are prominent, our approach yields results comparable to the state-of-the-art [3]. But we also obtain very good results on more complex images, where the objects are located in arbitrary positions, poses, and scales in the images. These results indicate that our flexible approach, which also allows the inclusion of features from segmented regions and even spatial relationships, leads us a significant step towards generic object recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.