Cerebral metabolic effects of locus coeruleus (LC) lesion or drugs affecting LC were investigated after unilateral injury of sensorimotor cortex in rats. Sensoriomotor cortex ablation produced a widespread depression of cerebral 14C-2-deoxyglucose utilization which was reversed by amphetamine (AMP, 2 mg/kg) and worsened by haloperidol (HAL, 0.4 mg/kg). Lesion of LC alone did not affect cerebral oxidative metabolism, measured by a stain for the enzyme alphaglycerophosphate dehydrogenase (a-GPDH). Lesion of LC prior to undercut laceration of motor cortex shortened time to onset of a-GPDH cortical paling. Treatment with AMP (2 mg/kg) blocked cortical paling ofthe enzyme stain at 4 days postinjury, an effect prevented by concomitant HAL (0.3 or 0.6 mg/kg). Apomorphine (1 mg/kg) did not block cortical paling. These data parallel effects of these drugs on recovery of function. The results suggest that a metabolic "remote functional depression" (RFD) is alleviated by catecholamine activation after cortical injury, whereas onset of RFD is accelerated by LC lesions and exacerbated by catecholamine blockade.The locus coeruleus (LC) may have an important role in neuronal development and plasticity (Felton, Hallman,
The objective of this study was to examine the effects of two different denervation procedures on the distribution of nerve fibers and neurotransmitter levels in the rat jejunum. Extrinsic nerves were eliminated by crushing the mesenteric pedicle to a segment of jejunum. The myenteric plexus and extrinsic nerves were eliminated by serosal application of the cationic surfactant benzyldimethyltetradecylammonium chloride (BAC). The effects of these two denervation procedures were evaluated at 15 and 45 days. The level of norepinephrine in whole segments of jejunum was initially reduced by more than 76% after both denervation procedures, but by 45 days the level of norepinephrine was the same as in control tissue. Tyrosine hydroxylase (noradrenergic nerve marker) immunostaining was absent at 15 days, but returned by 45 days. However, the pattern of noradrenergic innervating axons was altered in the segment deprived of myenteric neurons. Immunohistochemical studies showed protein gene product 9.5 (PGP 9.5)-immunoreactive fibers in whole-mount preparations of the circular smooth muscle in the absence of the myenteric plexus and extrinsic nerves. At 45 days, the number of nerve fibers in the circular smooth muscle increased. Vasoactive intestinal polypeptide (VIP)-immunoreactive fibers, a subset of the PGP 9.5 nerve fibers, were present in the circular smooth muscle at both time points examined. Choline acetyltransferase (CAT) activity and VIP and leucine enkephalin levels were measured in separated smooth muscle and submucosa-mucosal layers of the denervated jejunum. VIP and leucine-enkephalin levels were no different from control in tissue that was extrinsically denervated alone. However, the levels of these peptides were elevated two-fold in the smooth muscle 15 and 45 days after myenteric and extrinsic denervation. In the submucosa-mucosa, VIP and leucine enkephalin levels also were elevated two-fold at 15 days, but comparable to control at 45 days. CAT activity was equal to control in the smooth muscle but elevated two-fold in the submucosa-mucosa at both times. These results provide evidence for innervation of the circular smooth muscle by the submucosal plexus. Moreover, these nerve fibers originating from the submucosal plexus proliferate in the absence of the myenteric plexus. Furthermore, the myenteric neurons appear to be essential for normal innervation of the smooth muscle by the sympathetic nerve fibers. It is speculated that the sprouting of the submucosal plexus induced by myenteric plexus ablation is mediated by increased production of trophic factors in the hyperplastic smooth muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.