This Data Descriptor announces the submission to public repositories of the PNNL Biodiversity Library, a large collection of global proteomics data for 112 bacterial and archaeal organisms. The data comprises 35,162 tandem mass spectrometry (MS/MS) datasets from ~10 years of research. All data has been searched, annotated and organized in a consistent manner to promote reuse by the community. Protein identifications were cross-referenced with KEGG functional annotations which allows for pathway oriented investigation. We present the data as a freely available community resource. A variety of data re-use options are described for computational modelling, proteomics assay design and bioengineering. Instrument data and analysis files are available at ProteomeXchange via the MassIVE partner repository under the identifiers PXD001860 and MSV000079053.
Abstract. For targeted proteomics to be broadly adopted in biological laboratories as a routine experimental protocol, wet-bench biologists must be able to approach selected reaction monitoring (SRM) and parallel reaction monitoring (PRM) assay design in the same way they approach biological experimental design. Most often, biological hypotheses are envisioned in a set of protein interactions, networks, and pathways. We present a plugin for the popular Skyline tool that presents public mass spectrometry data in a pathway-centric view to assist users in browsing available data and determining how to design quantitative experiments. Selected proteins and their underlying mass spectra are imported to Skyline for further assay design (transition selection). The same plugin can be used for hypothesis-driven dataindependent acquisition (DIA) data analysis, again utilizing the pathway view to help narrow down the set of proteins that will be investigated. The plugin is backed by the Pacific Northwest National Laboratory (PNNL) Biodiversity Library, a corpus of 3 million peptides from >100 organisms, and the draft human proteome. Users can upload personal data to the plugin to use the pathway navigation prior to importing their own data into Skyline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.