Chronic cardiovascular diseases are significant health problems. Although current treatment strategies have tremendously improved disease management, up to 30% of these patients cannot be successfully treated with current treatment approaches and new treatment strategies are clearly needed. Gene therapy and therapeutic vascular growth may provide a new treatment option for these patients. Several growth factors, like vascular endothelial growth factors, fibroblast growth factors and hepatocyte growth factor have been tested in clinical trials. However, apart from demonstration of increased vascularity, very few results with clinical significance have been obtained. Problems with gene transfer efficiency, short duration of transgene expression, selection of endpoints, and suboptimal patients for gene therapy have been recognized. Ongoing gene therapy trials have included improvements in study protocols, vector delivery and endpoints, addressing the identified problems. Better, targeted delivery systems and new, more optimal growth factors have been taken to clinical testing. Recent advances in these areas will be discussed and the concept of angiogenic therapy as a sole treatment is re-evaluated. A combination with regenerative therapies or standard revascularization operations might be needed to improve tissue function and clinical benefits.
Background:
Sphingolipids have recently emerged as a biomarker of recurrence and mortality after myocardial infarction (MI). The increased ceramide levels in mammalian heart tissues during acute MI, as demonstrated by several groups, is associated with higher cell death rates in the left ventricle and deteriorated cardiac function. Ceramidase, the only enzyme known to hydrolyze proapoptotic ceramide, generates sphingosine, which is then phosphorylated by sphingosine kinase to produce the prosurvival molecule sphingosine-1-phosphate. We hypothesized that Acid Ceramidase (AC) overexpression would counteract the negative effects of elevated ceramide and promote cell survival, thereby providing cardioprotection after MI.
Methods:
We performed transcriptomic, sphingolipid, and protein analyses to evaluate sphingolipid metabolism and signaling post-MI. We investigated the effect of altering ceramide metabolism through a loss (chemical inhibitors) or gain (modified mRNA [modRNA]) of AC function post hypoxia or MI.
Results:
We found that several genes involved in de novo ceramide synthesis were upregulated and that ceramide (C16, C20, C20:1, and C24) levels had significantly increased 24 hours after MI. AC inhibition after hypoxia or MI resulted in reduced AC activity and increased cell death. By contrast, enhancing AC activity via AC modRNA treatment increased cell survival after hypoxia or MI. AC modRNA-treated mice had significantly better heart function, longer survival, and smaller scar size than control mice 28 days post-MI. We attributed the improvement in heart function post-MI after AC modRNA delivery to decreased ceramide levels, lower cell death rates, and changes in the composition of the immune cell population in the left ventricle manifested by lowered abundance of proinflammatory detrimental neutrophils.
Conclusions:
Our findings suggest that transiently altering sphingolipid metabolism through AC overexpression is sufficient and necessary to induce cardioprotection post-MI, thereby highlighting the therapeutic potential of AC modRNA in ischemic heart disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.