New strategies to access functional monolayers could augment current surface modification methods. Here we present addressable N-heterocyclic carbene (ANHC) anchors for gold surfaces. A suite of experimental and theoretical methods was used to characterize ANHC monolayers. We demonstrate grafting of highly fluorinated polymers from surface-bound ANHCs. This work establishes ANHCs as viable anchors for gold surfaces.
Water splitting by artificial catalysts is a critical process in the production of hydrogen gas as an alternative fuel. In this paper, we examine the essential role of theoretical calculations, with particular focus on density functional theory (DFT), in understanding the water-splitting reaction on these catalysts. First, we present an overview of DFT thermochemical calculations on water-splitting catalysts, addressing how these calculations are adapted to condensed phases and room temperature. We show how DFT-derived chemical descriptors of reactivity can be surprisingly good estimators for reactive trends in water-splitting catalysts. Using this concept, we recover trends for bulk catalysts using simple model complexes for at least the first-row transition-metal oxides. Then, using the CoPi cobalt oxide catalyst as a case study, we examine the usefulness of simulation for predicting the kinetics of water splitting. We demonstrate that the appropriate treatment of solvent effects is critical for computing accurate redox potentials with DFT, which, in turn, determine the rate-limiting steps and electrochemical overpotentials. Finally, we examine the ability of DFT to predict mechanism, using ruthenium complexes as a focal point for discussion. Our discussion is intended to provide an overview of the current strengths and weaknesses of the state-of-the-art DFT methodologies for condensed-phase molecular simulation involving transition metals and also to guide future experiments and computations toward the understanding and development of novel water-splitting catalysts.
Study of the density, spatial distribution, and molecular interactions of receptors on the cell membrane provides the knowledge required to understand cellular behavior and biological functions, as well as to discover, design, and screen novel therapeutic agents. However, the mapping of receptor distribution and the monitoring of ligand–receptor interactions on live cells in a spatially and temporally ordered manner are challenging tasks. In this paper, we apply fluorescence correlation spectroscopy (FCS) to map receptor densities on live cell membranes by introducing fluorescently marked aptamer molecules, which specifically bind to certain cell-surface receptors. The femtoliter-sized (0.4 fL) observation volume created by FCS allows fluorescent-aptamer detection down to 2 molecules and appears to be an ideal and highly sensitive biophysical tool for studying molecular interactions on live cells. Fluorophore-labeled aptamers were chosen for receptor recognition because of their high binding affinity and specificity. Aptamer sgc8, generated for specific cell recognition by a process called cell systematic evolution of ligands by exponential enrichment, was determined by FCS to have a binding affinity in the picomolar range (dissociation constant Kd = 790 ± 150 pM) with its target membrane receptor, human protein tyrosine kinase-7 (PTK7), a potential cancer biomarker. We then constructed a cellular model and applied this aptamer–receptor interaction to estimate receptor densities and distributions on the cell surface. Specifically, different expression levels of PTK7 were studied by using human leukemia CCRF-CEM cells (1300±190 receptors μm−2) and HeLa cervical cancer cells (550±90 receptors μm−2). Competition studies with excess nonlabeled aptamers and proteinase treatment studies proved the validity of the density-estimation approach. With its intrinsic advantages of direct measurement, high sensitivity, fast analysis, and single-cell measurement, this FCS density-estimation approach holds potential for future applications in molecular-interaction studies and density estimations for subcellular structures and membrane receptors.
Surface passivation has enabled the development of silicon-based solar cells and microelectronics. However, a number of emerging applications require a paradigm shift from passivation to functionalization, wherein surface functionality is installed proximal to the silicon surface. To address this need, we report here the use of persistent aminocarbenes to functionalize hydrogen-terminated silicon surfaces via Si-H insertion reactions. Through the use of model compounds (H-Si(TMS)3 and H-Si(OTMS)3), nanoparticles (H-SiNPs), and planar Si(111) wafers (H-Si(111)), we demonstrate that among different classes of persistent carbenes, the more electrophilic and nucleophilic ones, in particular, a cyclic (alkyl)(amino)carbene (CAAC) and an acyclic diaminocarbene (ADAC), are able to undergo insertion into Si-H bonds at the silicon surface, forming persistent C-Si linkages and simultaneously installing amine or aminal functionality in proximity to the surface. The CAAC (6) is particularly notable for its clean insertion reactivity under mild conditions that produces monolayers with 21 ± 3% coverage of Si(111) atop sites, commensurate with the expected maximum of ∼20%. Atomic force and transmission electron microscopy, nuclear magnetic resonance, X-ray photoelectron, and infrared spectroscopy, and time-of-flight secondary ion mass spectrometry provided evidence for the surface Si-H insertion process. Furthermore, computational studies shed light on the reaction energetics and indicated that CAAC 6 should be particularly effective at binding to silicon dihydride, trihydride, and coupled monohyride motifs, as well as oxidized surface sites. Our results pave the way for the further development of persistent carbenes as universal ligands for silicon and potentially other nonmetallic substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.